

LEISTUNGSERKLÄRUNG

DoP 0327

für fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer (Verbundspreizdübel zur Verankerung im Beton)

DE

1. <u>Eindeutiger Kenncode des Produkttyps:</u> **DoP 0327**

2. Verwendungszweck(e): Nachträgliche Befestigung in gerissenem oder ungerissenem Beton, siehe Anhang,

insbesondere die Anhänge B1 - B11.

3. Hersteller: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Deutschland

4. <u>Bevollmächtigter:</u> –

5. AVCP - System/e: 1

6. Europäisches Bewertungsdokument: EAD 330499-01-0601
Europäische Technische Bewertung: ETA-21/0948; 2022-09-09

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik

Notifizierte Stelle(n): 2873 TU Darmstadt

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhang C1

Widerstand für kombiniertes Versagen Herausziehen und Betonausbruch: Anhänge C2-C4

Widerstand für kegelförmigen Betonausbruch: Anhang C2

Randabstand zur Vermeidung von Spaltversagen bei Belastung: Anhang C2

Robustheit: Anhänge C2-C4

Montagedrehmoment: Anhänge B3, B4

Minimaler Rand- und Achsabstand: Anhänge B3, B4

Charakteristischer Widerstand bei Querzugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhang C1 Widerstand für Pry-out Versagen: Anhang C2 Widerstand für Betonkantenbruch: Anhang C2

Verschiebungen unter kurz- und langzeitiger Belastung:

Verschiebungen unter kurz- und langzeitiger Belastung: Anhänge C5

Charakteristische Widerstände und Verschiebungen für die seismischen Leistungskategorien C1 und C2:

Widerstand für Zugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand für Zugbelastung, Verschiebungen, Kategorie C2: NPD Widerstand für Querzugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand für Querzugbelastung, Verschiebungen, Kategorie C2: NPD

Faktor Ringspalt: NPD

Hygiene, Gesundheit und Umwelt (BWR 3)

Emission und/ oder Freisetzung von gefährlichen Stoffen: NPD

Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:

- Spezifische Technische Dokumentation:

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Dr.-Ing. Oliver Geibig, Geschäftsführer Business Units & Engineering

Tumlingen, 2022-09-16

Jürgen Grün, Geschäftsführer Chemie & Qualität

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V84.xlsm 1/1

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Übersetzungshilfe der Wesentlichen Merkmale und Leistungsparameter für Annexes

Machanical register as and stability (DMD 1)	ii Aillicaes						
Mechanical resistance and stability (BWR 1)							
Mechanische Festigkeit und Standsicherheit (BWR 1)							
Characteristic resistance to tension load (static and quasi-static loading):	isaha Balaatur						
Charakteristischer Widerstand bei Zugbelastung (statische und quasi-stat 1 Resistance to steel failure:							
	$N_{Rk,s}$ [kN]						
Widerstand für Stahlversagen: 2 Resistance to combined pull- out and concrete cone failure:	T 1/ T (N/21 0 1.755)						
Widerstand für kombiniertes Versagen Herausziehen und Betonausbru	ich:	T _{Rk} and/or T _{Rk,100} [N/mm²], ψ ⁰ _{sus} [-] (BF)					
Widerstand for Kombiniertes Versagen Herausziehen und Betonausbru	$N_{Rk,p}$ and/or $N_{Rk,p,100}$ [kN](BEF)						
3 Resistance to concrete cone failure:		C _{cr.N} [mm], k _{cr.N} , k _{ucr.N} [-]					
Widerstand für kegelförmigen Betonausbruch:		Ser, N. [11111]. Ner, N. Muer, N. E. J.					
4 Edge distance to prevent splitting under load:		C _{cr,sp} [mm]					
Randabstand zur Vermeidung von Spaltversagen bei Belastung:		edisp [· · · · ·]					
5 Robustness:		Yinst [-]					
Robustheit:		11100 1					
6 Maximum installation torque:		max T _{inst} [Nm] (BF)					
		- , ,					
Installation torque:		T _{inst} [Nm] (BEF)					
Montagedrehmoment:							
7 Minimum edge distance and spacing:		c _{min} , s _{min} , h _{min} [mm]					
Minimaler Rand- und Achsabstand:							
Characteristic resistance to shear load (static and quasi-static loading):		•					
Charakteristischer Widerstand bei Querzugbelastung (statische und quas	i-statische Belas	tung):					
8 Resistance to steel failure:		V ⁰ _{Rk,s} [kN], M ⁰ _{Rk,s} [Nm], k ₇ [-]					
Widerstand für Stahlversagen:							
9 Resistance to pry-out failure:		k ₈ [-]					
Widerstand für Pry-out Versagen:							
10 Resistance to concrete edge failure:		d _{nom} , I _f [mm]					
Widerstand für Betonkantenbruch:							
Displacements under short-term and long-term loading:							
Verschiebungen unter kurz- und langzeitiger Belastung:							
11 Displacements under short-term and long-term loading:		δ_0 , δ_∞ [mm or mm/(N/mm ²)]					
Verschiebungen unter kurz- und langzeitiger Belastung:							
Characteristic resistance and displacements for seismic performance categorie							
Charakteristische Widerstände und Verschiebungen für die seismischen I	_eistungskategor	ien C1 und C2:					
12 Resistance to tension load, displacements:		INT TUND (-11)					
Widerstand für Zugbelastung, Verschiebungen, Kategorie C1:	C1	N _{Rk,s,C1} [kN] (all)					
		T _{Rk,C1} [N/mm ²] (BF)					
Widerstand für Zughelactung Verschiebungen Ketegerie CO	C2	N _{Rk,p,C1} [kN] (BEF) N _{Rk,s,C2} [kN] (all)					
Widerstand für Zugbelastung, Verschiebungen, Kategorie C2:	62						
		т _{Rk,C2} [N/mm²] (BF) N _{Rk,p,C2} [kN] (BEF)					
13 Resistance to shear load, displacements:	δ _{N.C2} [mm] (all)						
Widerstand für Querzugbelastung, Verschiebungen, Kategorie C1:	V _{Rk,s,C1} [kN] (all)						
Triderstand for Querzugbelastung, verschliebungen, Rategorie CT.	C1	*KK,S,CT [WV] (GII)					
 Widerstand für Querzugbelastung, Verschiebungen, Kategorie C2:	C2	V _{Rk,s,C2} [kN] (all)					
The state of the s	$\delta_{V,C2}$ [mm] (all)						
14 Factor annular gap:	α _{gap} [-]						
Faktor Ringspalt:							
Hygiene, health and the environment (BWR 3)							
Hygiene, Gesundheit und Umwelt (BWR 3)							
15 Content, emission and/or release of dangerous substances:		-					
Emission und/ oder Freisetzung von gefährlichen Stoffen:							
		1					

Fischer DATA DOP_ECs_V84.xlsm Appendix 0

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer" ist ein Verbundspreizdübel, der aus einer Kartusche mit Injektionsmörtel fischer FIS HB oder einer fischer Reaktionspatrone FHB II-P(F) und einer Ankerstange FHB II - A S oder FHB II Inject - A S mit Sechskantmutter und Unterlegscheibe besteht.

Die Reaktionspatrone wird in ein Bohrloch im Beton gesetzt. Die speziell geformte Ankerstange wird in die Reaktionspatrone mit einer Maschine durch Schlagen und Drehen getrieben. Für das Injektionssystem wird die Ankerstange in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt. Die Lastübertragung erfolgt durch Formschluss mehrerer Konen im Verbundmörtel und durch eine Kombination aus Verbundspannung und Reibungskräften in den Verankerungsgrund (Beton).

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

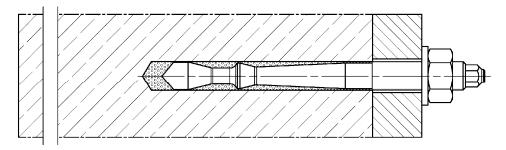
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 4, B 3 bis B 4
Charakteristischer Widerstand für Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 2
Verschiebungen für Kurzzeit- und Langzeiteinwirkungen	Siehe Anhang C 5
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet

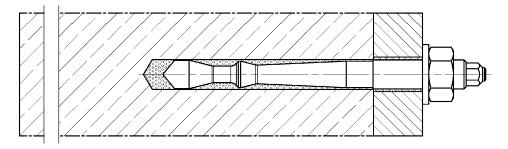
3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

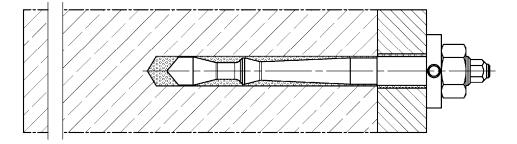
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1


Einbauzustände Teil 1

Highbond - Anker FHB II - A S


Vorsteckmontage

Durchsteckmontage

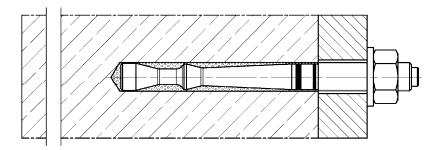
Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

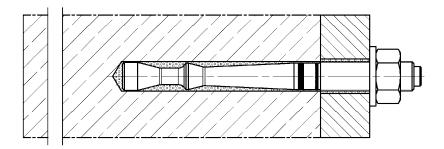
fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Produktbeschreibung

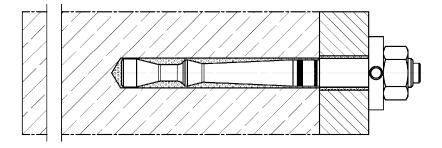
Einbauzustände Teil 1; FHB II - A S


Anhang A 1

Anhang 3 / 24


Einbauzustände Teil 2

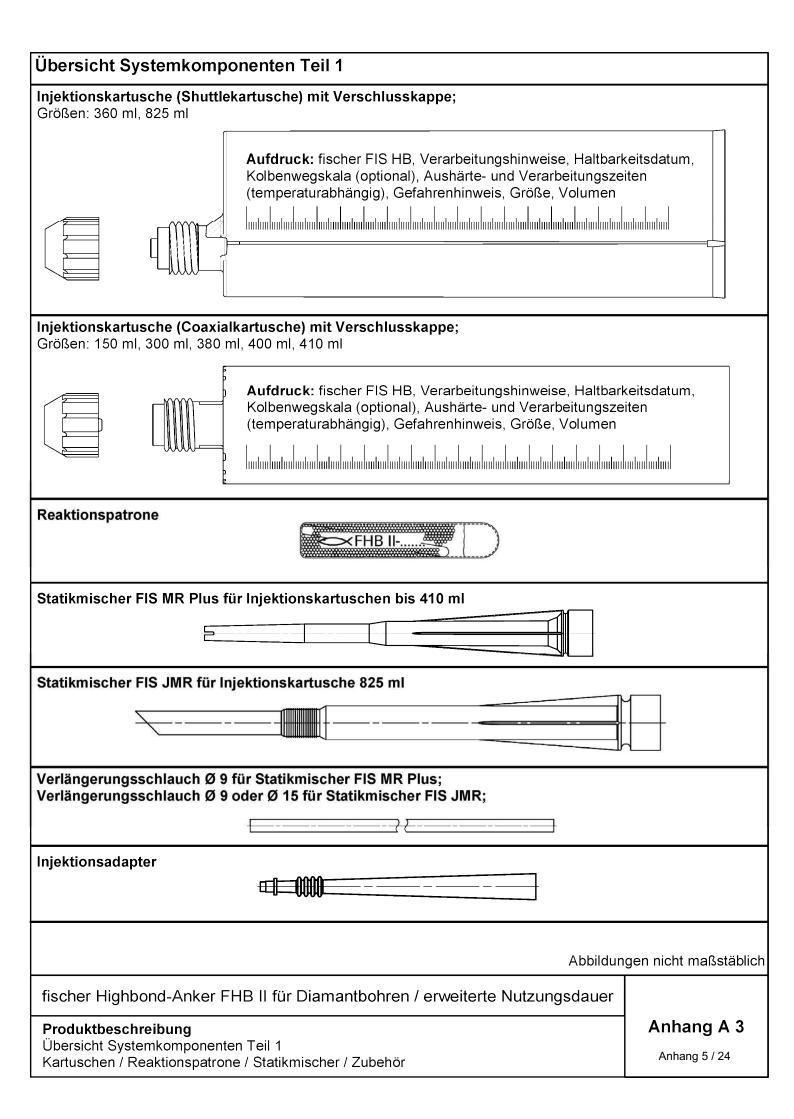
Highbond - Anker FHB II Inject - A S (Anwendung nur mit Injektionsmörtel FIS HB)


Vorsteckmontage

Durchsteckmontage

Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

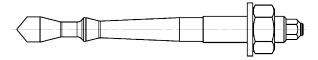
Abbildungen nicht maßstäblich

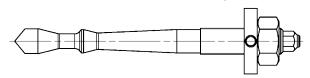

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Produktbeschreibung

Einbauzustände Teil 2; FHB II Inject - A S

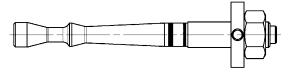
Anhang A 2


Anhang 4 / 24


Übersicht Systemkomponenten Teil 2

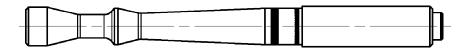
fischer Highbond - Anker FHB II und FHB II Inject; vormontierter Zustand

Highbond - Anker FHB II - A S


alternative Ausführung

Highbond - Anker FHB II Inject - A S

alternative Ausführung


Highbond Ankerstange FHB II - A S

Größen: M16, M20, M24

Highbond Ankerstange FHB II Inject - A S

Größen: M16, M20, M24

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Produktbeschreibung

Übersicht Systemkomponenten Teil 2 Ankerstangen

Anhang A 4

Anhang 6 / 24

Übersicht Systemkomponenten Teil 3 fischer Verfüllscheibe (verschiedene Ausführungen) radial schräg axial Kegelpfanne Unterlegscheibe Sechskantmutter

Reinigungsbürste BS

Druckluft-Reinigungsgerät ABP mit Druckluftdüse: oder Ausbläser groß ABG:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Produktbeschreibung

Übersicht Systemkomponenten Teil 3 Stahlteile / Reinigungsbürste / Ausbläser Anhang A 5

Anhang 7 / 24

Tabe	elle A6.1: Werks	stoffe				
Teil	Bezeichnung	Material				
1	Injektionskartusche		Mörtel, Härter, Füllstoffe			
2	Reaktionspatrone		Mörtel, Härter, Füllstoffe			
		Stahl	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl C		
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionsbeständigkeits- klasse CRC III nach EN 1993-1-4:2006+A1:2015	gemäß EN 10088-1:2014 der Korrosionsbeständigkeits klasse CRC V nach EN 1993-1-4:2006+A1:2015		
		Festigkeitsklasse 8.8 EN ISO 898-1:2013	Festigkeitsklasse 80 EN ISO 3506-1:2020	Festigkeitsklasse 80 EN ISO 3506-1:2020		
3	Highbond- Ankerstange FHB II - A S oder FHB II Inject - A S	galv. verzinkt ≥ 5 μm ISO 4042:2018/Zn5/An(A2K) nach EN ISO 4042:2018 A ₅ > 12 %	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014 $A_5 > 12 \%$ Bruchdehnung		
		Bruchdehnung	$A_5 > 12 \%$ Bruchdehnung	Ç		
4	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm ISO 4042:2018/Zn5/An(A2K) nach EN ISO 4042:2018	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014		
5	Sechskantmutter	Festigkeitsklasse 8 gemäß EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) nach EN ISO 4042:2018	Festigkeitsklasse 70 oder 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 oder 80 EN ISO 3506-2:2020 1.4565; 1.4529; EN 10088-1:2014		
6	Kegelpfanne oder fischer Verfüll- scheibe	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) nach EN ISO 4042:2018	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014		

Produktbeschreibung Werkstoffe Anhang A 6

Spezifizierung des Verwendungszwecks Teil 1 Tabelle B1.1: Übersicht Montage und Nutzung

		fischer Highbond Injektionsmörtel FIS HB oder Real				
		FHB II - A S	FHB II Inject - A S			
		Injektionsmörtel FIS HB oder Reaktionspatrone FHB II-P / FHB II-PF	Injektionsmörtel FIS HB			
Hammerbohren mit Standard- bohrer	54444000000	alle G	rößen			
Hammerbohren mit Hohlbohrer	Ī	alle G (Heller "Dus Bosch "Speed Clean";	ter Expert";			
Diamantbohren		alle Größen (nur mit Reaktionspatrone zulässig)	Leistung nicht bewertet			
Statische und quasi-statische	ungerissenen Beton	alle Größen	alle Größen			
Beanspruchung tung, im	gerissenen Beton	Tabellen: C1.1, C2.1, C3.1, C3.2, C4.1, C5.1, C5.2	Tabellen: C1.1, C2.1, C4.1, C5.2			
Montage- I1	trockener oder nasser Beton	alle G	rößen			
Nutzungs- bedingungen I2	wasser- gefülltes Bohrloch	alle Größen (nur mit Reaktionspatrone zulässig)	Leistung nicht bewertet			
Seismische Leis kategorie C1 un	•	Leistung nic	ht bewertet			
Einbaurichtung		D3 (horizontale und vertikale Montage	nach unten, sowie Überkopfmontage)			
D. A. a. d. a. a. a. a. d.	Vorsteck- montage	alle G	rößen			
Montageart —	Durchsteck- montage	alle G	rößen			
Einbautemperat	ur ¹⁾	FIS HB: T _{i,min} = -5 °C bis T _{i,t}				
Gebrauchs- temperatur- bereiche	Temperatur- bereich T2	FHB II-P / PF: T _{i,min} = -5 °C bis T _{i,max} = +40 °C -40 °C bis +80 °C (maximale Kurzzeittemperatur +80 °C; maximale Langzeittemperatur +50 °C)				
1) Für die übl	iche Temperatu	rveränderung nach dem Einbau				
			Abbildungen nicht maßstäbl			
fischer Highb	ond-Anker FH	B II für Diamantbohren / erweiterte N	Nutzungsdauer			
Verwendungs	zweck		Anhang B 1			
Spezifikationen			Anhang 9 / 24			

Spezifizierung des Verwendungszwecks Teil 2

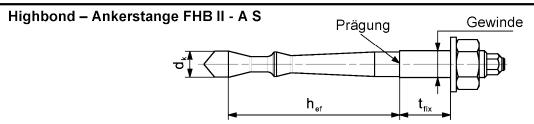
Verankerungsgrund:

Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Für alle anderen Bedingungen gemäß EN1993-1-4: 2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklasse nach Anhang A 6 Tabelle A6.1.

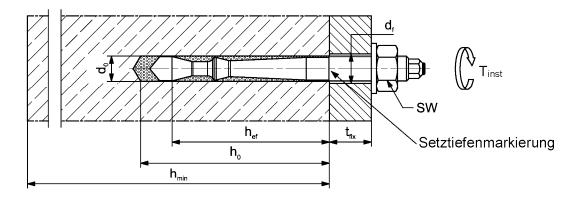
Bemessung:


- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018

- Einbau des Dübels durch entsprechend geschulten Personals unter der Aufsicht des Bauleiters
- Überkopfmontage erlaubt (notwendiges Zubehör siehe Montageanleitung)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Tabelle B3.1: Montagekennwerte für Highbond - Ankerstangen FHB II - A S						
Ankerstange FH	IB II - A S	G	ewinde	M16x95	M20x170	M24x170
Zugehörige Reak FHB II-P bzw. FH	•		[-]	16x95	20x170	24x170
Konusdurchmess	ser	dk		14,5	23	,0
Schlüsselweite		SW		24	30	36
Bohrernenndurch	nmesser	d ₀		16	2	5
Bohrlochtiefe		h ₀		110	19	0
Effektive Veranke	erstiefe	h _{ef}		95	17	'0
Minimale Rand- ι Achsabstände	und s _{min}	= C _{min}	[mm]	50	8	0
Durchmesser des Durch-	Vorsteck- montage	d₁≤		18	22	26
gangslochs im Anbauteil	Durchsteck- montage	d₁≤		18	2	6
Minimale Dicke de	s Betonbauteils	h_{min}		150	24	10
Montagedrehmoment T _{inst}		[Nm]	50	10	00	
Dicke des Anbau	teils	t _{fix} ≤		1500		
fischer Verfüllsch	oibo 1)	≥ d _a	[mm]	38	46	54


¹⁾ Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Ankers)

Prägung: Werkzeichen, Gewindedurchmesser, Verankerungstiefe z.B.: M16x95 Bei nichtrostendem Stahl zusätzlich "A4" und bei hochkorrosionsbeständiger Stahl zusätzlich "C". Hochkorrosionsbeständiger Stahl zusätzlich "(" auf der Stirnseite

Einbauzustände:

fischer Verfüllscheibe 1)

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck

Montagekennwerte für Highbond - Ankerstange FHB II - A S

Anhang B 3

10

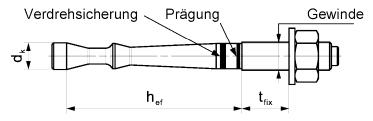
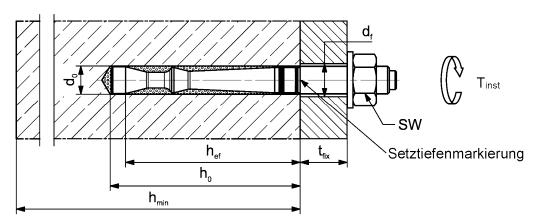

Anhang 11 / 24

Tabelle B4.1: Montagekennwerte für Highbond - Ankerstangen FHB II Inject - A S mit Injektionsmörtel FIS HB

Ankerstange FH	B II Inject - A S	Ge	ewinde	M16x95	M20x170	M24x170
Konusdurchmess	ser	d _k		14,5	23	,0
Schlüsselweite		SW		24	30	36
Bohrernenndurch	ımesser	d_0		16	2	5
Bohrlochtiefe		h 0		101	17	76
Effektive Veranke	erstiefe	h _{ef}		95	17	70
Minimale Rand- ւ Achsabstände	ınd s _{min}	= C _{min}	[mm]	50	8	0
Durchmesser des Durch-	Vorsteck- montage	d₁≤		18	22	26
gangslochs im Anbauteil	Durchsteck- montage	d₁≤		20	2	6
Minimale Dicke de	s Betonbauteils	h_{min}		150	24	10
Montagedrehmor	nent	T _{inst}	[Nm]	50	10	00
Dicke des Anbau	teils	t _{fix} ≤			1500	
fischer Verfüllsch	oibo 1)	≥ d _a	[mm]	38	46	54
inscher Verrunsch	eine '/	ts		7	8	10


¹⁾ Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Ankers)

Highbond - Ankerstange FHB II Inject - A S

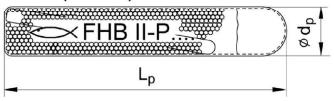
Prägung: Werkzeichen, Gewindedurchmesser, Verankerungstiefe z.B.: M16x95
Bei nichtrostendem Stahl zusätzlich "A4" und bei hochkorrosionsbeständiger Stahl zusätzlich "C".
Hochkorrosionsbeständiger Stahl zusätzlich "(" auf der Stirnseite

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck


Montagekennwerte für Highbond - Ankerstange FHB II Inject - A S

Anhang B 4

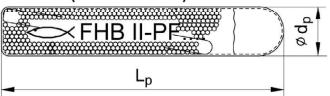

Anhang 12 / 24

Tabelle B5.1: Abmessungen der Reaktionspatronen FHB II-P und FHB II-PF					
Reaktionspatrone			16x95	20x170	24x170
Patronenlänge	Lp	[mm]	120	185	185
Patronendurchmesser	Ø d _p	[mm]	14,5	21	1,5

FHB II-P (standard)

FHB II-PF (schnell härtend)

Aufdruck: Werkzeichen, Gewindedurchmesser, Gefahrenhinweis und effektive Verankerstiefe.


z.B.: FHB II-P 16x95 oder

FHB II-PF 16x95

Tabelle B5.2: Kennwerte der **Reinigungsbürsten** BS (Stahlbürste mit Stahlborsten; nur bei der Anwendung mit Injektionsmörtel oder bei der Anwendung mit Reaktionspatrone im diamantgebohrten Bohrloch)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser do	[mm]	16	25
Stahlbürsten- durchmesser BS	[mm]	20	27

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck

Abmessungen Reaktionspatrone

Kennwerte der Reinigungsbürsten BS (Stahlbürsten mir Stahlborsten)

Anhang B 5

Anhang 13 / 24

Tabelle B6.1: Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit des Injektionsmörtels FIS HB

Temperatur im Verankerungsgrund ¹⁾ [°C]	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit ²⁾ t _{cure}
-5 bis 0 ³⁾	-	6 h
> 0 bis 5 ³⁾	-	3 h
> 5 bis 10	15 min	90 min
> 10 bis 20	6 min	35 min
> 20 bis 30	4 min	20 min
> 30 bis 40	2 min	12 min

¹⁾ Die Temperatur im Verankerungsgrund darf während der Aushärtezeit die minimalen Temperaturen nicht unterschreiten.

Tabelle B6.2: Minimale Aushärtezeit der Reaktionspatrone FHB II-P und FHB II-PF

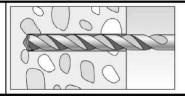
Reaktionspatrone FHB II-P (standard)					
Temperatur im Verankerungsgrund ¹⁾ [°C]	Minimale Aushärtezeit ²⁾ t _{cure}				
-5 bis 0	4 h				
> 0 bis 10	45 min				
> 10 bis 20	20 min				
> 20	10 min				

Reaktionspatrone FHB II-PF (schnell härtend)					
Temperatur im Verankerungsgrund 1) [°C]	Minimale Aushärtezeit ²⁾ t _{cure}				
-5 bis 0	8 min				
> 0 bis 10	6 min				
> 10 bis 20	4 min				
> 20	2 min				

¹⁾ Die Temperatur im Verankerungsgrund darf während der Aushärtezeit die minimalen Temperaturen nicht unterschreiten.

Anhang B 6

²⁾ Im nassen Beton oder wassergefülltem Bohrloch ist die Aushärtezeit zu verdoppeln


³⁾ Minimal Kartuschentemperatur +5 °C

²⁾ Im nassen Beton oder wassergefülltem Bohrloch ist die Aushärtezeit zu verdoppeln

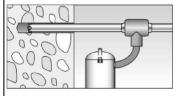
Montageanleitung Teil 1; Montage mit Reaktionspatrone FHB II-P oder FHB II-PF

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

Bohrloch erstellen. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabelle B3.1** Bohrlochreinigung ist nicht notwendig

Mit Schritt 6 fortfahren (Anhang B 8)


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

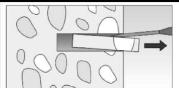
1

Einen geeigneten Hohlbohrer (siehe T**abelle B1.1**) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten.Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein.

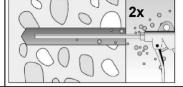
Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabelle B3.1


Mit Schritt 6 fortfahren (Anhang B 8)

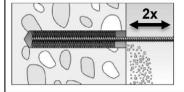
Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)

1

Bohrloch erstellen, Bohrlochdurchmesser d₀ und h₀ siehe Tabelle B3.1

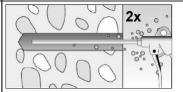

Bohrkern brechen und herausziehen

2


Bohrloch spülen, bis das Wasser klar wird

3

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar)


4

Bohrloch zweimal ausbürsten. Entsprechende Bürsten siehe **Tabelle B5.2**

5

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar)

Mit Schritt 6 fortfahren (Anhang B 8)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck

Montageanleitung Teil 1

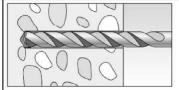
Montage mit Reaktionspatrone FHB II-P oder FHB II-PF

Anhang B 7

Anhang 15 / 24

Montageanleitung Teil 2; Montag mit der Reaktionspatrone FHB II-P oder FHB II-PF Montage Highbond-Ankerstange FHB II - A S 6 Reaktionspatrone FHB II-P oder FHB II-PF in das Bohrloch stecken Vorsteckmontage: Nur Highbond-Ankerstange FHB II - A S mit Dachspitze verwenden. Die Ankerstange mit Hammerbohrmaschine oder Schlagbohrmaschine drehend-schlagend montieren. Beim Erreichen der Setztiefenmarkierung Maschine sofort ausschalten 7 Durchsteckmontage: Nur Highbond-Ankerstange FHB II - A S mit Dachspitze verwenden. Die Ankerstange mit Hammerbohrmaschine oder Schlagbohrmaschine drehend-schlagend montieren. Beim Erreichen der Setztiefenmarkierung Maschine sofort ausschalten Vorsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein 8 Durchsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein und im Anbauteil sichtbar sein Bei Überkopfmontage die Ankerstange mit Keilen (z.B. fischer 8a Zentrierkeile) fixieren 9 Aushärtezeit abwarten, tcure siehe Tabelle B6.2 Sechskantmutter mit Montagedrehmoment Tinst anziehen siehe 10 Tabellen B3.1, B4.1 Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel Option FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus). ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich tfix (Nutzlänge des Anker) fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang B 8 Verwendungszweck

Anhang 16 / 24


Montageanleitung Teil 2

Montage mit Reaktionspatrone FHB II-P oder FHB II-PF

Montageanleitung Teil 3; Montage Injektionsmörtel FIS HB

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

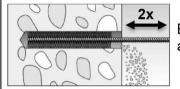
Bohrloch erstellen.

Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe Tabellen B3.1, B4.1

2

Bohrloch reinigen.

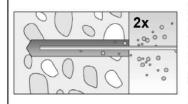
Bohrloch zweimal ausblasen.


Falls vorhanden, stehendes Wasser aus dem Bohrloch entfernen.

Für Bohrdurchmesser $d_0 = 16 \text{ mm}$ mit

Handausbläser AB-G oder Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar).

Für Bohrdurchmesser **d**₀ = **25 mm** mit Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar). Verwendung einer Druckluftdüse


3

Bohrloch mit Stahlbürste zweimal ausbürsten. Zugehörige Bürsten siehe **Tabelle 5.2**

4

Bohrloch reinigen.

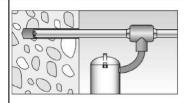
Bohrloch zweimal ausblasen.

Falls vorhanden, stehendes Wasser aus dem Bohrloch entfernen.

Für Bohrdurchmesser **d**₀ **= 16 mm** mit Handausbläser AB-G oder Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar).

Für Bohrdurchmesser **d**₀ = **25 mm** mit Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar). Verwendung einer Druckluftdüse

Mit Schritt 5 fortfahren (Anhang B 10)


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe T**abelle B1.1**) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten.Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein.

Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabelle B3.1, B4.1

Mit Schritt 5 fortfahren (Anhang B 10)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck Montageanleitung Teil 3

Montage mit Injektionsmörtel FIS HB

Anhang B 9

Anhang 17 / 24

Montageanleitung Teil 4; Montage mit Injektionsmörtel FIS HB

Kartuschenvorbereitung

5

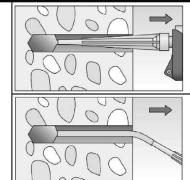
Verschlusskappe abschrauben

Statikmischer aufschrauben

(die Mischspirale im Statikmischer muss deutlich sichtbar sein)

6

Kartusche in das Auspressgerät legen


7

Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Einbringen des Injektionsmörtels

Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

8

Bei Bohrlochtiefen ≥ 170 mm Injektionshilfe verwenden

Mit Schritt 9 fortfahren (Anhang B 11)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck Montageanleitung Teil 4 Montage mit Injektionsmörtel Anhang B 10

Anhang 18 / 24

Montageanleitung Teil 5; Montage mit Injektionsmörtel FIS HB Montage mit Highbond-Ankerstange FHB II - A S oder FHB II Inject - A S Vorsteck- oder Druchsteckmontage: 9 Die Ankerstange mit leichten Drehbewegungen in das Bohrloch bis zum Bohrlochgrund eindrücken. Nur saubere und ölfreie Stahlteile verwenden. Vorsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. 10 Durchsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus der Bohrung des Anbauteils austreten bzw. in der Bohrung des Anbauteils sichtbar sein. Bei Überkopfmontage die Ankerstange mit Keilen fixieren. 10a (z.B. fischer Zentrierkeile) Aushärtezeit abwarten, tcure 11 siehe Tabelle B6.1 12 Sechskantmutter mit Montagedrehmoment Tinst anziehen siehe B3.1, B4.1 Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Ankerstange und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel Option FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus). ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich tfix (Nutzlänge des Anker) fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang B 11 Verwendungszweck Montageanleitung Teil 5

Montage mit Injektionsmörtel

Anhang 19 / 24

Tabelle C1.1: Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querbeanspruchung von Highbond-Ankerstange FHB II - A S und FHB II Inject - A S

Ankerstange FH	IB II - A S / FHB II Inject - /	AS	M16x95	M20x170	M24x170
Charakteristisc	her Widerstand gegen S	tahlve	ersagen unter Zugbe	anspruchung	
Charakteris-	Stahl verzinkt		61,6	128	3,5
tischer	Nichtrostender Stahl A4	[kN]			
Widerstand N _{Rk,s}	Hochkorrosions- beständiger Stahl C	[1414]	61,6	128,5	
Teilsicherheits	beiwerte 1)				
	Stahl verzinkt			1,5 ¹⁾	
Teilsicherheits Beiwert	Nichtrostender Stahl A4	[-]		1,5 ¹⁾	
γMs,N	Hochkorrosions- beständiger Stahl C	[-]		1,5 ¹⁾	
Charakteristisc	her Widerstand gegen S	tahlve	ersagen unter Querb	eanspruchung	
Ohne Hebelarm	1				
Charakteris-	Stahl verzinkt		50,8	80,3	114,2
tischer	Nichtrostender Stahl A4	[kN]	62,7	97,9	124,5
Widerstand V ^o _{Rk,s}	Hochkorrosions- beständiger Stahl C		62,7	97,9	141
Duktilitätsfaktor	k 7	[-]		1,0	
Mit Hebelarm					
Charakteris-	Stahl verzinkt	[Nm]	266	519	896
tischer Widerstand M ⁰ Rk,s	Nichtrostender Stahl A4				
	Hochkorrosions- beständiger Stahl C	[[,,]	266	519	896
Teilsicherheits	beiwerte 1)	'			
T eilsicherheitsbe	eiwert γ _{Ms,V}	[-]		1,25	

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

Leistung

Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querbeanspruchung von Highbond-Ankerstangen FHB II - A S und FHB II Inject - A S

Anhang C 1

Anhang 20 / 24

Tabelle C2.1:	Charakteristischer Wider beanspruchung	stand gegen Betonversagen unter Zug- / Quer-
Ankerstange FHI	B II - A S / FHB II Inject - A S	Alle Größen

Ankerstange FHB II - A S / FHB II Inject - A S			Alle Großen		
Charakteristischer Widerst	and gegen B	etonv	ersagen unter Zugbeanspruchung		
Montagebeiwert	γinst	[-]	Siehe Anhänge C 3 bis C 4		
Faktoren für Betondruckfes	stigkeiten > C	20/25			
	C25/30		1,12		
Erhöhungsfaktor ψ _c für	C30/37		1,22		
gerissenen oder	C35/45	r 1	1,32		
ungerissenen Beton	C40/50	[-]	1,41		
$N_{Rk,p} = \psi_c N_{Rk,p} (C20/25)$	C45/55		1,50		
	C50/60		1,58		
Versagen durch Spalten					
Randabstand	C cr,sp	[mm]	2 h _{ef}		
Achsabstand	S cr,sp	[mm]	4 h _{ef}		
Versagen durch Betonaust	oruch				
Ungerissener Beton	k ucr,N	r 1	11,0 ¹⁾		
Gerissener Beton	k cr,N	[-]	7,7 1)		
Randabstand	C cr,N	[]	1,5 h _{ef}		
Achsabstand	S _{cr,N}	[mm]	3 h _{ef}		
Charakteristischer Widerst	and gegen B	etonv	ersagen unter Querbeanspruchung		
Montagebeiwert	γinst	[-]	1,0		
Betonausbruch auf der las	tabgewandte	n Seit	e		

Montagebeiwert	γ inst	[-]	1,0
Betonausbruch auf der lasta	bgewandte	en Seit	e
Faktor für Betonausbruch	k 8	[-]	2,0
Detankenteneuehmieh		:	

Betonkantenausbruch								
Ankerstange FHB II - A S und FHB II Inject - A S			M16x95	M20x170	M24x170			
Effektive Länge des Stahlteils unter Querbeanspruchung	l _f	[mm]	95	17	70			
Rechnerischer Durchmesser	dnom]	16	2	<u></u> !5			

¹⁾ Bezogen auf Betonzylinderdruckfestigkeit

Leistung

Charakteristischer Widerstand gegen Betonversagen unter Zug- / Querbeanspruchung

Anhang C 2

Anhang 21 / 24

Tabelle C3.1:	Highbon	d-Anker	stange	stand gegen Vers FHB II - A S mit o antgebohrten Bohrl	der Reaktionspatro		
Highbond-Ankerstange FHB II - A S ¹⁾ M16x95 M20x170						M24x170	
Charakteristischer Widerstand gegen Versagen durch Herausziehen							
Rechnerischer D	urchmesser	d	[mm]	16	2	5	
Ungerissener Be	eton						
				en Beton C20/25			
	trockener od	er nasser E	Beton / w	vassergefülltes Bohrlog	ch)		
Temperatur- bereich T2	0 °C / 80 °C	$N_{Rk,p,ucr}$	[kN]	51,5	11	8,5	
Gerissener Beto	(A.T.)						
Charakteristisch			A. 19 10	201-12-24-00 to 1 100-24 2-30 1000	o ×		
	trockener od	<u>er nasser E</u>	Beton / w	/assergefülltes Bohrlog	ch)		
Temperatur- bereich T2	0 °C / 80 °C	$N_{Rk,p,cr}$	[kN]	42,8	10	1,4	
Montagebeiwert							
Trockener oder na	asser Beton	— γinst	[-]		1,2		
Wassergefülltes B	ohrloch	/ Illist	LJ		1,2		
	Highbon	d-Anker	stange	FHB II - A S mit o			
Highbond-Anke	Highbon oder FHI	nd-Ankers 3 II-PF im	stange		der Reaktionspatr		
	Highbon oder FHI	nd-Ankers B II-PF im	stange n diama	e FHB II - A S mit o antgebohrten Bohrl	der Reaktionspatr loch; 100 Jahre M20x170	one FHB II-P	
	Highbon oder FHE rstange FHE ner Widersta	nd-Ankers B II-PF im	stange n diama	FHB II - A S mit of antgebohrten Bohrl	der Reaktionspatr loch; 100 Jahre M20x170 en	one FHB II-P	
Charakteristisch	Highbon oder FHE rstange FHE ner Widersta urchmesser	nd-Ankers BII-PF im BII - AS 1)	stange n diama Versag	e FHB II - A S mit of antgebohrten Bohrl M16x95 en durch Herauszieh	der Reaktionspatr loch; 100 Jahre M20x170 en	M24x170	
Charakteristisch Rechnerischer Di Ungerissener Be	Highbon oder FHE rstange FHE ner Widersta urchmesser eton	nd-Ankers B II-PF im B II - A S ¹⁾ and gegen	stange diama Versag	e FHB II - A S mit of antgebohrten Bohrl M16x95 en durch Herauszieh	der Reaktionspatr loch; 100 Jahre M20x170 en	M24x170	
Charakteristisch Rechnerischer De Ungerissener Be Charakteristisch Diamantbohren (t	Highbor oder FHE rstange FHE ner Widerstaurchmesser eton ner Widersta	nd-Ankers BII-PF im BII - AS 1) and gegen d	versag	M16x95 en durch Herauszieh	der Reaktionspatr loch; 100 Jahre M20x170 en	M24x170	
Charakteristischen Der Ungerissener Be Charakteristischen Diamantbohren (st. Tomporatus	Highbor oder FHE rstange FHE ner Widerstaurchmesser eton ner Widersta	and gegen d and im unger nasser E	Versag [mm] gerissen	M16x95 en durch Herauszieh 16 en Beton C20/25	der Reaktionspatr loch; 100 Jahre M20x170 en 2	M24x170	
Charakteristischen Der Ungerissener Bei Charakteristischen Diamantbohren (1) Temperaturbereich T2 50 Gerissener Beto	Highbor oder FHE rstange FHE rer Widerstaurchmesser eton her Widerstatrockener od °C / 80 °C	and gegen d and im unger nasser E	Versag [mm] gerissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 //assergefülltes Bohrlog 51,5	der Reaktionspatr loch; 100 Jahre M20x170 en 2	M24x170	
Charakteristischen Diamentbohren (f. Temperaturbereich T2 Gerissener Beto Charakteristischen Charakteristischen Charakteristischen Charakteristischen Charakteristischen Diamentbohren (f. 50 der 1988) (1988	Highbor oder FHE rstange FHE rer Widerstaurchmesser eton rer Widerstatrockener od °C / 80 °C on rer Widersta	and im unger nasser E	Versag [mm] Perissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 // ASSERGEFÜlltes Bohrlog 51,5 Beton C20/25	der Reaktionspatr loch; 100 Jahre M20x170 en 2	M24x170	
Charakteristischen Diamantbohren (1)	Highbor oder FHE rstange FHE rer Widerstaurchmesser eton rer Widerstatrockener od °C / 80 °C on rer Widersta	and im unger nasser E	Versag [mm] Perissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 //assergefülltes Bohrlog 51,5	der Reaktionspatr loch; 100 Jahre M20x170 en 2	M24x170	
Charakteristische Rechnerischer Der Ungerissener Betomantbohren (1) Temperaturbereich T2 Gerissener Betomantbohren (1) Temperaturbereich T2 Gerissener Betomantbohren (1) Temperaturbereich T2 50 Temperaturbereich T2	Highbor oder FHE rstange FHE returchmesser eton er Widerstatrockener oder C / 80 °C on er Widerstatrockener oder C / 80 °C on er Widerstatrockener oder C / 80 °C	and im unger nasser E	Versag [mm] Perissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 // ASSERGEFÜlltes Bohrlog 51,5 Beton C20/25	der Reaktionspatr loch; 100 Jahre M20x170 en 2 ch)	M24x170	
Charakteristische Rechnerischer Der Ungerissener Ber Charakteristische Diamantbohren (f. Temperaturbereich T2 Serissener Beto Charakteristische Diamantbohren (f. Temperaturbereich T2 50 Montagebeiwert	Highbor oder FHE rstange FHE returner Widerstatrockener od rockener od returner Widerstatrockener od rockener od returner widerstatrockener od rockener od rockene	and im unger nasser E	Versag [mm] Jerissen [kN] issenen	M16x95 en durch Herauszieh 16 en Beton C20/25 //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog	der Reaktionspatr loch; 100 Jahre M20x170 en 2 ch) 116	M24x170 5 8,5	
Charakteristische Rechnerischer Der Ungerissener Betomantbohren (1) Temperaturbereich T2 Gerissener Betomantbohren (1) Temperaturbereich T2 Gerissener Betomantbohren (1) Temperaturbereich T2 Montagebeiwert Trockener oder na	Highbor oder FHE rstange FHE rstange FHE received with the standard of the sta	and im unger nasser E	Versag [mm] Jerissen [kN] issenen	M16x95 en durch Herauszieh 16 en Beton C20/25 //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog	her Reaktionspatroch; 100 Jahre M20x170 en 2 ch) 112 1,2	M24x170 5 8,5	
Charakteristischer Dereich T2 Gerissener Betor Charakteristischer Diamantbohren (f. 2) Gerissener Betor Charakteristischer Diamantbohren (f. 2) Temperaturbereich T2 Montagebeiwert Trockener oder nat Wassergefülltes Betor Diamantbohren (f. 2)	Highbor oder FHE retange FHE r	and im unger nasser E NRk,p,ucr,100 NRk,p,cr,100 Yinst	versag [mm] gerissen [kN] issenen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 //assergefülltes Bohrloc	her Reaktionspatroch; 100 Jahre M20x170 en 2 ch) 1,2 1,2 1,2	M24x170 5 8,5	
Charakteristischer Dereich T2 Gerissener Beto Charakteristischer Diamantbohren (for Temperaturbereich T2 Gerissener Beto Charakteristischer Diamantbohren (for Temperaturbereich T2 Montagebeiwert Trockener oder nat Wassergefülltes B	Highbor oder FHE retange FHE retange FHE reton reton reckener od controckener	and im unger nasser E NRk,p,ucr,100 Yinst THB II - A S	Versag [mm] Perissen Beton / w [kN] [kN] [-] S mit de	M16x95 en durch Herauszieh 16 en Beton C20/25 //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog //assergefülltes Bohrlog	her Reaktionspatroch; 100 Jahre M20x170 en 2 ch) 116 117 118 1,2 1,2 1,2 18 II-P / FHB II-PF	M24x170 5 8,5	

Tabelle C4.1:	Charakteristischer Widerstand gegen Versagen durch Herausziehen der
	Highbond-Ankerstange FHB II - A S mit der Reaktionspatrone FHB II-P /
	FHB II-PF oder dem Injektionsmörtel FIS HB und Highbond-Ankerstange
	FHB II Inject - A S mit Injektionsmörtel FIS HB im hammergebohrten
	Bohrloch; 100 Jahre

Highbond-Ankerstange FHB II - A S Highbond-Ankerstange FHB II Injec	M16x95	M20x170	M24x170				
Charakteristischer Widerstand geg	en						
Rechnerischer Durchmesser d	16	2	5				
Ungerissener Beton		-					
Charakteristischer Widerstand im	ungerisser	nen Beton C20/25					
Hammerbohren mit Standard- oder H	lohlbohrer (trockener oder nasser	Beton / wassergefüllte	es Bohrloch)			
Temperatur- bereich T2 50 °C / 80 °C N _{Rk,p,uc}	r,100 [kN]	52,4	118,5				
Gerissener Beton							
Charakteristischer Widerstand im	gerissener	Beton C20/25					
Hammerbohren mit Standard- oder F	lohlbohrer (trockener oder nasser	Beton / wassergefüllte	<u>es Bohrloch)</u>			
Temperatur- 50 °C / 80 °C N _{Rk,p,cr}	,100 [kN]	36,0 86,0		5,0			
Montagebeiwerte							
Trockener oder nasser Beton	r 1	1,0					
Wassergefülltes Bohrloch (nur mit Reaktionspatrone)	[-]		1,0				

¹⁾ Highbond-Ankerstange FHB II - A S Reaktionspatrone FHB II-P / FHB II-PF oder Injektionsmörtel FIS HB

Leistung

Charakteristischer Widerstand gegen Versagen durch Herausziehen der Highbond-Ankerstange FHB II - A S / FHB II Inject - A S (Hammerbohren); 100 Jahre

Anhang C 4

Anhang 23 / 24

²⁾ Highbond-Ankerstange FHB II Inject - A S mit Injektionsmörtel FIS HB

Ungerissener Beton; Temperaturbereich T2	Highbond- <i>l</i> FHB II – A S	Ankerstange S	M16x95	M20x170	M24x170				
SNUF-Fattor [mm/kN]	Verschiebungs-Faktoren unter Zugbeanspruchung 1)								
Dispuration	Ungerissen	er Beton; Tempe	eraturbereich T2						
0,120 0,045 0,045	δ N0-Faktor		0,030	0,020	0,016				
No.P-sktor N	 δN∞-Faktor	[mm/kN]	0,120	0,045	0,045				
No. Faktor Sin. Faktore Imm/kN 0,120 0,045 0,045 Verschiebungs-Faktoren unter Querbeanspruchung 2) Ungerissener oder gerissener Beton; Temperaturbereich T2 Sin. Faktor Imm/kN 0,02 0,02 0,03 Berechnung der effektiven Verschiebung: 2) Berechnung der effektiven Verschiebung: δίνο = δίνο - Faktor · V δίνο = δίνο - Faktor · N δίνο = δίνο - Faktor · V N = einwirkende Zugbeanspruchung V = einwirkende Querbeanspruchung Tabelle C5.2: Verschiebungen für Highbond-Ankerstangen FHB II - A S und FHB II Inject - A S; 100 Jahre Highbond-Ankerstangen FHB II A S M20x170 M24x170 Highbond-Ankerstangen M16x95 M20x170 M24x170 Highbond-Since Imm/kN 0,030 0,020 0,016 Since Faktor Imm/kN 0,030 0,020 0,016 Since Faktor Imm/kN 0,030 0,020 0,045 O,120 0,045 0,045 O,120 0,045 0,045 Verschiebungs-Faktoren unter Querbeanspruchung 2) Ungerissener Beton; Temperaturbereich T2 Since Faktor Imm/kN 0,030 0,020 0,016 Since Faktor Imm/kN 0,030 0,020 0,016 Since Faktor Imm/kN 0,030 0,020 0,045 Ungerissener der gerissener Beton; Temperaturbereich T2 Since Faktor Imm/kN 0,030 0,030 0,030 O,020 0,045 0,045 Verschiebungs-Faktoren unter Querbeanspruchung 2) Ungerissener oder gerissener Beton; Temperaturbereich T2 Since Faktor Imm/kN 0,03 0,03 0,03 O,03 0,03 0,03 0,03 O,03 0,03 0,03 0,03 O,03 0,03 0,03 0,03 O,03 0,03 0,03 0,03 O,04 O,05 O,05 O,05 O,05 O,06 O,06 O,06 O,06 O,07 O,07 O,07 O,07 O,08 O,09 O,09 O,08 O,09 O,09 O,09 O,09 O,09 O,09 O,09 O,	Gerissener	Beton; Tempera	turbereich T2		1				
One	δ N0-Faktor	F // N IZ	0,030	0,020	0,016				
Ungerissener oder gerissener Beton; Temperaturbereich T2 Svo-Faktor [mm/kN] 0,02 0,02 0,03 0,03 Berechnung der effektiven Verschiebung: 2 Berechnung der effektiven Verschiebung: 8 8 8 8 8 8 8 8 8	δN∞-Faktor	[mm/kiN]	0,120	0,045	0,045				
Ungerissener oder gerissener Beton; Temperaturbereich T2 Syo_Faktor [mm/kN] 0,02 0,02 0,03 0,03 Berechnung der effektiven Verschiebung: 2 Berechnung der effektiven Verschiebung: Syo_Faktor V	Verschiebu	ngs-Faktoren un	ter Querbeanspruchung	g ²⁾	*				
Dougle Faktor Dougle Fakt	Tracks								
1	δ V0-Faktor		0,02	0,02	0,02				
δN0 = δN0-Faktor · N δV0 = δV0-Faktor · V δNc = δNc-Faktor · N δVc = δVc-Faktor · V N = einwirkende Zugbeanspruchung V = einwirkende Querbeanspruchung Tabelle C5.2: Verschiebungen für Highbond-Ankerstangen FHB II - A S und FHB II Inject - A S; 100 Jahre Highbond-Ankerstangen FHB II - A S und FHB II nject - A S (δ∨∞-Faktor	[mm/kN]	0,03	0,03	0,03				
δη0 = δηυ-Faktor · N δγυ = δηυ-Faktor · V δης = δηνε-Faktor · N δγς = δηνε-Faktor · V N = einwirkende Zugbeanspruchung V = einwirkende Querbeanspruchung Tabelle C5.2: Verschiebungen für Highbond-Ankerstangen FHB II - A S und FHB II Inject - A S; 100 Jahre Highbond-Ankerstangen FHB II - A S und FHB II nject - A S Highbond-Ankerstangen FHB II - A S / FHB II Inject - A S M16x95 M20x170 M24x170 Verschiebungs-Faktoren unter Zugbeanspruchung ¹¹ Ungerissener Beton; Temperaturbereich T2 M20x170 M24x170 Jüngerissener Beton; Temperaturbereich T2 On (0,02) 0,016 0,045 0,045 Gerissener Beton; Temperaturbereich T2 On (0,02) 0,045 0,045 Verschiebungs-Faktor Imm/kN] 0,030 0,020 0,016 Σονω-Faktor Imm/kN] 0,020 0,045 0,045 Verschiebungs-Faktor of mm/kN] 0,02 0,02 0,02 Σονω-Faktor Imm/kN] 0,02 0,02 0,02 Σονω-Faktor Imm/kN] 0,02 0,02 0,02 Σονω-Faktor N 0,02	1) Berechnu	ng der effektiven	Verschiebung:	2) Berechnung der effektive	en Verschiebung				
Now = δNow-Faktor · N N = einwirkende Zugbeanspruchung Tabelle C5.2: Verschiebungen für Highbond-Ankerstangen FHB II - A S und FHB II Inject - A S; 100 Jahre Highbond-Ankerstangen FHB II A S M16x95 M20x170 M24x170 Highbond-Ankerstangen FHB II A S M16x95 M20x170 M24x170 Highbond-Ankerstangen FHB II Inject - A S M16x95 M20x170 M24x170 Werschiebungs-Faktoren unter Zugbeanspruchung 1) Ungerissener Beton; Temperaturbereich T2 δΝυ-Faktor [mm/kN] 0,030 0,020 0,016 δΝω-Faktor [mm/kN] 0,030 0,020 0,045 Gerissener Beton; Temperaturbereich T2 δΝυ-Faktor [mm/kN] 0,030 0,020 0,016 δΝω-Faktor [mm/kN] 0,120 0,045 0,045 Verschiebungs-Faktoren unter Querbeanspruchung 2) Ungerissener oder gerissener Beton; Temperaturbereich T2 δνυ-Faktor [mm/kN] 0,02 0,02 0,02 δνυ-Faktor [mm/kN] 0,03 0,03 0,03 1) Berechnung der effektiven Verschiebung: 2) Berechnung der effektiven Verschiebung: δνυ - δνυ-Faktor · V δνυ - δνυ-Faktor · N δνυ - δνυ-Faktor · V		_	v orodinobarig.	•	on vorcomobang.				
N = einwirkende Zugbeanspruchung									
Tabelle C5.2: Verschiebungen für Highbond-Ankerstangen FHB II - A S und FHB II Inject - A S; 100 Jahre Highbond-Ankerstangen FHB II - A S / FHB II Inject - A S M16x95 M20x170 M24x170 FHB II Inject - A S M16x95 M20x170 M24x170 Verschiebungs-Faktoren unter Zugbeanspruchung ¹¹ Ungerissener Beton; Temperaturbereich T2 δN0-Faktor [mm/kN] 0,030 0,020 0,016 δN0-Faktor [mm/kN] 0,030 0,020 0,016 δN0-Faktor [mm/kN] 0,030 0,020 0,016 Verschiebungs-Faktoren unter Querbeanspruchung ²¹ Ungerissener oder gerissener Beton; Temperaturbereich T2 δνο-Faktor [mm/kN] 0,02 0,02 0,02 δνω-Faktor [mm/kN] 0,03 0,03 0,03 ¹¹ Berechnung der effektiven Verschiebung: ²) Berechnung der effektiven Verschiebung: δνο-Faktor · V δνο = δνο-Faktor · N δνο = δνο-Faktor · V δνο = δνα-Faktor · N δνο = δνα-Faktor · V			pruchung		eanspruchung				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \frac{\delta_{\text{NO-Faktor}}}{\delta_{\text{Nx-Faktor}}} \text{ [mm/kN]} $	FHB II - A S	S /	M16x95	M20x170	M24x170				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FHB II – A S FHB II Inject	6 / t - A S	1000 S. 1000 S. 100	100000000000000000000000000000000000000	M24x170				
	FHB II – A S FHB II Inject Verschiebu	S / t - A S ngs-Faktoren un	ter Zugbeanspruchung	100000000000000000000000000000000000000	M24x170				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FHB II – A S FHB II Inject Verschiebu Ungerissen	S / t - A S ngs-Faktoren un er Beton; Tempe	ter Zugbeanspruchung eraturbereich T2	1)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FHB II – A S FHB II Inject Verschiebu Ungerissen δno-Faktor	S / t - A S ngs-Faktoren un er Beton; Tempe	ter Zugbeanspruchung eraturbereich T2 0,030	0,020	0,016				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FHB II – A S FHB II Inject Verschiebu Ungerissen δ N0-Faktor δ N ∞ -Faktor	ngs-Faktoren un er Beton; Tempe	ter Zugbeanspruchung eraturbereich T2 0,030 0,120	0,020	0,016				
	FHB II – A S FHB II Inject Verschiebu Ungerissen δ N0-Faktor δ N ∞ -Faktor	ngs-Faktoren un er Beton; Tempe [mm/kN]	ter Zugbeanspruchung eraturbereich T2 0,030 0,120 turbereich T2	0,020 0,045	0,016 0,045				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FHB II – A S FHB II Inject Verschiebu Ungerissen δΝο-Faktor Gerissener δΝο-Faktor	ngs-Faktoren un er Beton; Tempe [mm/kN]	ter Zugbeanspruchung eraturbereich T2 0,030 0,120 turbereich T2 0,030	0,020 0,045 0,020	0,016 0,045 0,016				
	FHB II – A S FHB II Inject Verschiebu Ungerissen δN0-Faktor Gerissener δN0-Faktor	mgs-Faktoren un er Beton; Tempe [mm/kN] Beton; Tempera	ter Zugbeanspruchung eraturbereich T2 0,030 0,120 turbereich T2 0,030 0,120	0,020 0,045 0,020 0,045	0,016 0,045 0,016				
$\delta_{V\infty\text{-Faktor}}$ 0,03 0,03 0,03 1) Berechnung der effektiven Verschiebung: 2) Berechnung der effektiven Verschiebung: $\delta_{N0} = \delta_{N0\text{-Faktor}} \cdot N$ $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$ $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot N$ $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$	FHB II — A S FHB II Inject Verschiebu Ungerissen δΝ0-Faktor Gerissener δΝ0-Faktor δΝν-Faktor Verschiebu	mgs-Faktoren un er Beton; Temper [mm/kN] Beton; Tempera [mm/kN]	ter Zugbeanspruchung eraturbereich T2 0,030 0,120 turbereich T2 0,030 0,120 ter Querbeanspruchung	0,020 0,045 0,020 0,045 g ²⁾	0,016 0,045 0,016				
$\begin{split} \delta_{N0} &= \delta_{N0\text{-Faktor}} \cdot N \\ \delta_{N\infty} &= \delta_{N\infty\text{-Faktor}} \cdot N \\ \end{split} \qquad \qquad \delta_{V0} &= \delta_{V0\text{-Faktor}} \cdot V \\ \delta_{V\infty} &= \delta_{V\infty\text{-Faktor}} \cdot V \end{split}$	FHB II — A S FHB II Inject Verschiebu Ungerissen δΝο-Faktor Gerissener δΝο-Faktor δΝο-Faktor Verschiebu Ungerissen	mgs-Faktoren un er Beton; Tempera [mm/kN] Beton; Tempera [mm/kN] ngs-Faktoren un er oder gerissen	ter Zugbeanspruchung eraturbereich T2 0,030 0,120 turbereich T2 0,030 0,120 ter Querbeanspruchung er Beton; Temperaturbe	0,020 0,045 0,020 0,045 g ²⁾	0,016 0,045 0,016 0,045				
$\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot N \qquad \qquad \delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$	FHB II — A S FHB II Inject Verschiebu Ungerissen δΝ0-Faktor Gerissener δΝν-Faktor Verschiebu Ungerissen	mgs-Faktoren un er Beton; Tempera [mm/kN] Beton; Tempera [mm/kN] ngs-Faktoren un er oder gerissen	ter Zugbeanspruchung eraturbereich T2 0,030 0,120 turbereich T2 0,030 0,120 ter Querbeanspruchung er Beton; Temperaturbe 0,02	0,020 0,045 0,020 0,045 g ²⁾ ereich T2	0,016 0,045 0,016 0,045				
	FHB II — A S FHB II Inject Verschiebu Ungerissen δΝ0-Faktor δΝα-Faktor δΝα-Faktor Verschiebu Ungerissen δνο-Faktor δνο-Faktor	mgs-Faktoren un er Beton; Tempera [mm/kN] Beton; Tempera [mm/kN] ngs-Faktoren un er oder gerissen [mm/kN]	ter Zugbeanspruchung praturbereich T2 0,030 0,120 turbereich T2 0,030 0,120 ter Querbeanspruchung er Beton; Temperaturbe 0,02 0,03	0,020 0,045 0,020 0,045 g ²⁾ ereich T2 0,02 0,03	0,016 0,045 0,045 0,045 0,02 0,03				
N = einwirkende Zugbeanspruchung V = einwirkende Querbeanspruchung	FHB II — A S FHB II Inject Verschiebu Ungerissen δN0-Faktor Gerissener δN0-Faktor Verschiebu Ungerissen δνω-Faktor Verschiebu Ungerissen δνω-Faktor	mgs-Faktoren un er Beton; Tempera [mm/kN] Beton; Tempera [mm/kN] ngs-Faktoren un er oder gerissen [mm/kN]	ter Zugbeanspruchung praturbereich T2 0,030 0,120 turbereich T2 0,030 0,120 ter Querbeanspruchung er Beton; Temperaturbe 0,02 0,03	0,020 0,045 0,020 0,045 g ²⁾ ereich T2 0,02 0,03	0,016 0,045 0,045 0,045 0,02 0,03				
	FHB II — A S FHB II Inject Verschiebu Ungerissen \[\delta_{N0-Faktor} \] \[\delta_{N0-Faktor} \] \[\delta_{N0-Faktor} \] \[\delta_{N0-Faktor} \] \[\delta_{Verschiebu} \] \[\delta_{Verschiebu} \] \[\delta_{V0-Faktor} \] \[\delta_{N0} = \delta_{N0-Faktor} \]	mgs-Faktoren un er Beton; Temper [mm/kN] Beton; Tempera [mm/kN] ngs-Faktoren un er oder gerissen [mm/kN] ng der effektiven	ter Zugbeanspruchung praturbereich T2 0,030 0,120 turbereich T2 0,030 0,120 ter Querbeanspruchung er Beton; Temperaturbe 0,02 0,03	0,020 0,045 0,020 0,045 0,020 0,045 g ²⁾ ereich T2 0,02 0,03 2) Berechnung der effektive δ _{V0} = δ _{V0-Faktor} · V	0,016 0,045 0,045 0,045 0,02 0,03				
C	FHB II — A S FHB II Inject Verschiebu Ungerissen δ N0-Faktor δ N0-Faktor δ N0-Faktor Verschiebu Ungerissen δ V0-Faktor δ V0-Faktor δ V0-Faktor 1) Berechnu δ N0 = δ N0- δ N ∞ = δ N δ N ∞	mgs-Faktoren un er Beton; Tempera [mm/kN] Beton; Tempera [mm/kN] ngs-Faktoren un er oder gerissen [mm/kN] ng der effektiven Faktor · N	ter Zugbeanspruchung eraturbereich T2 0,030 0,120 turbereich T2 0,030 0,120 ter Querbeanspruchung er Beton; Temperaturbe 0,02 0,03 Verschiebung:	1) 0,020 0,045 0,020 0,045 0,045 0,045 0,020 0,045 0,03 2) Berechnung der effektive $\delta_{V0} = \delta_{V0-Faktor} \cdot V$ $\delta_{V\infty} = \delta_{V\infty-Faktor} \cdot V$	0,016 0,045 0,045 0,045 0,02 0,03 en Verschiebung:				
Verschiebung für Highbond-Ankerstangen FHB II - A S und FHB II Inject - A S;	FHB II — A S FHB II Inject Verschiebu Ungerissen δ N0-Faktor δ N ∞ -Faktor Gerissener δ N0-Faktor Verschiebu Ungerissen δ V0-Faktor 1) Berechnu δ N ∞ = δ N ∞ N = einwi	mgs-Faktoren un er Beton; Tempera [mm/kN] Beton; Tempera [mm/kN] ngs-Faktoren un er oder gerissen [mm/kN] ng der effektiven Faktor · N rkende Zugbeans	ter Zugbeanspruchung praturbereich T2 0,030 0,120 turbereich T2 0,030 0,120 ter Querbeanspruchung er Beton; Temperaturbe 0,02 0,03 Verschiebung:	1) 0,020 0,045 0,020 0,045 0,045 0,045 0,020 0,045 0,03 2) Berechnung der effektive $\delta_{V0} = \delta_{V0-Faktor} \cdot V$ $\delta_{V\infty} = \delta_{V\infty-Faktor} \cdot V$	0,016 0,045 0,016 0,045 0,02 0,03 en Verschiebung:				

Sicherheitsdatenblatt

gemäß REACH-Verordnung (EG) 1907/2006 einschließlich Änderungsverordnung (EU) 2020/878 Ausgabedatum: 21.08.2024 Version: 1.0

ABSCHNITT 1: Bezeichnung des Stoffs beziehungsweise des Gemischs und des Unternehmens

1.1. Produktidentifikator

Produktform : Gemisch Handelsname : FHB II-P

UFI : 5M30-E0RR-X00D-MPW2

Artikelnummer : 00096824

1.2. Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

Relevante identifizierte Verwendungen

Hauptverwendungskategorie : Industrielle Verwendung, Gewerbliche Nutzung

Verwendung des Stoffs/des Gemischs : Verbundmörtel

Verwendungen, von denen abgeraten wird

Einschränkungen der Anwendung : Technisches Datenblatt beachten

1.3. Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

Hersteller Inverkehrhringer

fischerwerke GmbH & Co. KG

Klaus-Fischer-Straße 1

Wiener Str. 95
72178 Waldachtal

Deutschland

fischer Austria GmbH

Wiener Str. 95
2514 Traiskirchen

Österreich

T +49(0)7443 12-0, F +49(0)7443 12-4222 T +43 22 52 53 73 00 , F +43 22 52 53 73 07 0

<u>info-sdb@fischer.de</u>, <u>www.fischer.de</u>

1.4. Notrufnummer

Notrufnummer : +49(0)6132-84463 (24h)

Land/Region	Organisation/Firma	Anschrift	Notrufnummer	Anmerkung
Österreich	Vergiftungsinformationszentrale	Stubenring 6 1010 Wien	+43 1 406 43 43	

ABSCHNITT 2: Mögliche Gefahren

2.1. Einstufung des Stoffs oder Gemischs

Einstufung gemäß Verordnung (EG) Nr. 1272/2008 [CLP]

Skin Sens. 1 H317 Aquatic Chronic 2 H411 Wortlaut der Gefahrenklassen, H- und EUH-Sätze: siehe Abschnitt 16

Schädliche physikalisch-chemische, gesundheitliche und Umwelt-Wirkungen

Kann allergische Hautreaktionen verursachen. Giftig für Wasserorganismen, mit langfristiger Wirkung.

2.2. Kennzeichnungselemente

Kennzeichnung gemäß Verordnung (EG) Nr. 1272/2008 [CLP]

Gefahrenpiktogramme (CLP)

GHS07

GHS09

Signalwort (CLP) : Achtung

Enthält : Butandioldimethacrylat; 2-Hydroxypropylmethacrylat; Dibenzoylperoxid

Gefahrenhinweise (CLP) : H317 - Kann allergische Hautreaktionen verursachen.

H411 - Giftig für Wasserorganismen, mit langfristiger Wirkung.

P280 - Augenschutz, Schutzhandschuhe, Schutzkleidung tragen.

2.3. Sonstige Gefahren

Sicherheitshinweise (CLP)

Enthält keine PBT und/oder vPvB-Stoffe \geq 0,1%, bewertet gemäß REACH Anhang XIII

21.08.2024 (Ausgabedatum) AT - de 1/9 24.07.2025 (Druckdatum)

Sicherheitsdatenblatt

gemäß REACH-Verordnung (EG) 1907/2006 einschließlich Änderungsverordnung (EU) 2020/878

Das Gemisch enthält keine Stoffe mit endokrinschädlichen Eigenschaften (gemäß REACH Artikel 59 Absatz 1 oder Verordnung 2017/2100 oder Verordnung 2018/605) in einer Konzentration von ≥ 0.1 %

ABSCHNITT 3: Zusammensetzung/Angaben zu Bestandteilen

3.2. Gemische

Name	Produktidentifikator	%	Einstufung gemäß Verordnung (EG) Nr. 1272/2008 [CLP]
Glas, Oxide, Chemikalien	CAS-Nr.: 65997-17-3 EG-Nr.: 266-046-0	≥ 30 - < 40	Nicht eingestuft
Butandioldimethacrylat	CAS-Nr.: 2082-81-7 EG-Nr.: 218-218-1 REACH-Nr.: 01-2119967415-30	≥ 1 - < 2,5	Skin Sens. 1B, H317
2-Hydroxypropylmethacrylat	CAS-Nr.: 27813-02-1 EG-Nr.: 248-666-3 REACH-Nr.: 01-2119490226-37	≥ 1 – < 2,5	Eye Irrit. 2, H319 Skin Sens. 1B, H317
Dibenzoylperoxid Stoff mit nationalem Arbeitsplatzgrenzwert (AT)	CAS-Nr.: 94-36-0 EG-Nr.: 202-327-6 EG Index-Nr.: 617-008-00-0 REACH-Nr.: 01-2119511472-50	≥ 1 - < 2,5	Org. Perox. B, H241 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Acute 1, H400 (M=10) Aquatic Chronic 1, H410 (M=10)

Wortlaut der H- und EUH-Sätze: siehe Abschnitt 16

ABSCHNITT 4: Erste-Hilfe-Maßnahmen

4.1. Beschreibung der Erste-Hilfe-Maßnahmen

Erste-Hilfe-Maßnahmen nach Einatmen : Die Person an die frische Luft bringen und für ungehinderte Atmung sorgen.

Erste-Hilfe-Maßnahmen nach Hautkontakt : Haut mit viel Wasser abwaschen. Kontaminierte Kleidung ausziehen. Bei Hautreizung oder -ausschlag:

Ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen.

Einige Minuten lang behutsam mit Wasser ausspülen. Eventuell vorhandene Kontaktlinsen nach Erste-Hilfe-Maßnahmen nach Augenkontakt

Möglichkeit entfernen. Weiter ausspülen. Sofort einen Arzt rufen. Bei Unwohlsein Giftinformationszentrum oder Arzt anrufen.

4.2. Wichtigste akute und verzögert auftretende Symptome und Wirkungen

Symptome/Wirkungen nach Hautkontakt Reizung. Kann allergische Hautreaktionen verursachen.

Symptome/Wirkungen nach Augenkontakt Schwere Augenschäden.

4.3. Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung

Symptomatisch behandeln.

Erste-Hilfe-Maßnahmen nach Verschlucken

ABSCHNITT 5: Maßnahmen zur Brandbekämpfung

5.1. Löschmittel

Geeignete Löschmittel Wassersprühstrahl. Trockenlöschpulver. Schaum.

Ungeeignete Löschmittel Wasser im Vollstrahl.

5.2. Besondere vom Stoff oder Gemisch ausgehende Gefahren

Gefährliche Zerfallsprodukte im Brandfall : Mögliche Freisetzung giftiger Rauchgase.

5.3. Hinweise für die Brandbekämpfung

Schutz bei der Brandbekämpfung : Nicht versuchen ohne geeignete Schutzausrüstung tätig zu werden. Umgebungsluft-unabhängiges

Atemschutzgerät. Vollständige Schutzkleidung.

Sonstige Angaben Kein Löschwasser in Abflüsse, Boden oder Wasserwege gelangen lassen. Nicht in die Kanalisation

gelangen lassen.

21.08.2024 (Ausgabedatum) AT - de 2/9

Sicherheitsdatenblatt

gemäß REACH-Verordnung (EG) 1907/2006 einschließlich Änderungsverordnung (EU) 2020/878

ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung

6.1. Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen anzuwendende Verfahren

Nicht für Notfälle geschultes Personal

Notfallmaßnahmen Verunreinigten Bereich lüften. Berührung mit den Augen und der Haut vermeiden. Einatmen von

Staub/Rauch/Gas/Nebel/Dampf/Aerosol vermeiden.

Einsatzkräfte

Nicht versuchen ohne geeignete Schutzausrüstung tätig zu werden. Weitere Angaben: siehe Abschnitt 8 Schutzausrüstung

"Begrenzung und Überwachung der Exposition/Persönliche Schutzausrüstung".

6.2. Umweltschutzmaßnahmen

Freisetzung in die Umwelt vermeiden.

6.3. Methoden und Material für Rückhaltung und Reinigung

Reinigungsverfahren : Das Produkt mechanisch aufnehmen.

: Stoffe oder Restmengen in fester Form einer zugelassenen Anlage zuführen. Sonstige Angaben

6.4. Verweis auf andere Abschnitte

Weitere Angaben siehe Abschnitt 13.

ABSCHNITT 7: Handhabung und Lagerung

7.1. Schutzmaßnahmen zur sicheren Handhabung

Zusätzliche Gefahren beim Verarbeiten : Bei üblichen Gebrauchsbedingungen keine nennenswerte Gefährdung zu erwarten. Falls Staub oder feine Partikel mit diesem Produkt erzeugt werden, ist es ratsam, größere inhalative Exposition so weit zu

reduzieren, dass der Arbeitsplatzgrenzwert nicht überschritten wird.

Schutzmaßnahmen zur sicheren Handhabung : Für eine gute Belüftung des Arbeitsplatzes sorgen. Berührung mit den Augen und der Haut vermeiden.

Persönliche Schutzausrüstung tragen. Einatmen von Dampf vermeiden.

Kontaminierte Kleidung vor erneutem Tragen waschen. Kontaminierte Arbeitskleidung nicht außerhalb Hygienemaßnahmen des Arbeitsplatzes tragen. Bei Gebrauch nicht essen, trinken oder rauchen. Nach Handhabung des

Produkts immer die Hände waschen.

7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten

: An einem gut belüfteten Ort aufbewahren. Kühl halten. Lagerbedingungen

7.3. Spezifische Endanwendungen

Keine weiteren Informationen verfügbar

ABSCHNITT 8: Begrenzung und Überwachung der Exposition/Persönliche Schutzausrüstungen

8.1. Zu überwachende Parameter

Nationale Grenzwerte für die berufsbedingte Exposition und biologische Grenzwerte

Österreich - Begrenzung der Exposition am Arbeitsplatz

Lokale Bezeichnung	Dibenzoylperoxid (Benzoylperoxid)
MAK (OEL TWA)	5 mg/m³ (E)
MAK (OEL STEL)	10 mg/m³ (E, 8x 5(Mow) min)
Anmerkung	Sh
Rechtlicher Bezug	BGBI. II Nr. 156/2021

8.2. Begrenzung und Überwachung der Exposition

Geeignete technische Steuerungseinrichtungen

Geeignete technische Steuerungseinrichtungen:

Für eine gute Belüftung des Arbeitsplatzes sorgen.

21.08.2024 (Ausgabedatum) AT - de 3/9

Sicherheitsdatenblatt

gemäß REACH-Verordnung (EG) 1907/2006 einschließlich Änderungsverordnung (EU) 2020/878

Persönliche Schutzausrüstung

Persönliche Schutzausrüstung - Symbol(e):

Augen- und Gesichtsschutz

Augenschutz:

Sicherheitsbrille

Hautschutz

Haut- und Körperschutz:

Bei der Arbeit geeignete Schutzkleidung tragen

Schutzhandschuhe. Durchbruchzeit: Empfehlungen des Lieferanten beachten. Bitte beachten Sie die vom Hersteller angegebenen Hinweise zur Durchlässigkeit und Durchbruchzeit

Handschutz					
Тур	Material	Permeation	Dicke (mm)	Durchdringung	Norm
•	Nitrilkautschuk (NBR), Butylkautschuk	2 (> 30 Minuten)			

Atemschutz

Atemschutz:

pH-Wert

Bei unzureichender Belüftung geeignete Atemschutzausrüstung tragen

Begrenzung und Überwachung der Umweltexposition

Begrenzung und Überwachung der Umweltexposition:

Freisetzung in die Umwelt vermeiden.

ABSCHNITT 9: Physikalische und chemische Eigenschaften

9.1. Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Nicht verfügbar

Aggregatzustand Farbe : braun. Geruch Nicht verfügbar Geruchsschwelle Nicht verfügbar : Nicht verfügbar Schmelzpunkt : Nicht anwendbar Gefrierpunkt Siedepunkt : Nicht verfügbar Entzündbarkeit Nicht brennbar. Untere Explosionsgrenze : Nicht anwendbar Obere Explosionsgrenze : Nicht anwendbar > 100 °C Flammpunkt Zündtemperatur : Nicht anwendbar : Nicht verfügbar Zersetzungstemperatur

Nicht verfügbar pH Lösung Viskosität, kinematisch Nicht anwendbar Löslichkeit Nicht verfügbar Nicht verfügbar Verteilungskoeffizient n-Oktanol/Wasser (Log Kow) Dampfdruck Nicht verfügbar Dampfdruck bei 50°C Nicht verfügbar Dichte Nicht verfügbar Relative Dichte Nicht verfügbar Relative Dampfdichte bei 20°C Nicht anwendbar Partikelgröße Nicht verfügbar

9.2. Sonstige Angaben

Keine weiteren Informationen verfügbar

AT - de 4/9

Sicherheitsdatenblatt

gemäß REACH-Verordnung (EG) 1907/2006 einschließlich Änderungsverordnung (EU) 2020/878

ABSCHNITT 10: Stabilität und Reaktivität

10.1. Reaktivität

Das Produkt ist nicht reaktiv unter normalen Gebrauchs-, Lagerungs- und Transportbedingungen.

10.2. Chemische Stabilität

Stabil unter normalen Bedingungen.

10.3. Möglichkeit gefährlicher Reaktionen

Unter normalen Verwendungsbedingungen sind keine gefährlichen Reaktionen bekannt.

10.4. Zu vermeidende Bedingungen

Keine unter den empfohlenen Lagerungs- und Handhabungsbedingungen (siehe Abschnitt 7).

10.5. Unverträgliche Materialien

Keine weiteren Informationen verfügbar

10.6. Gefährliche Zersetzungsprodukte

Unter normalen Lager- und Anwendungsbedingungen sollten keine gefährlichen Zersetzungsprodukte gebildet werden.

ABSCHNITT 11: Toxikologische Angaben

11.1. Angaben zu den Gefahrenklassen im Sinne der Verordnung (EG) Nr. 1272/2008

Akute Toxizität (Oral) : Nicht eingestuft

Akute Toxizität (Oran) Akute Toxizität (Dermal) Akute Toxizität (inhalativ)	: Nicht eingestuft : Nicht eingestuft : Nicht eingestuft	
Butandioldimethacrylat (2082-81-7)		
LD50 (oral, Ratte)	10066 mg/kg Körpergewicht (OECD-Methode 401)	
LD50 (dermal, Kaninchen)	> 3000 mg/kg Körpergewicht	
2-Hydroxypropylmethacrylat (278	13-02-1)	
LD50 (oral, Ratte)	> 2000 mg/kg Körpergewicht (OECD-Methode 401)	
LD50 (dermal, Kaninchen)	> 5000 mg/kg Körpergewicht	
Dibenzoylperoxid (94-36-0)		
LD50 (oral, Ratte)	> 5000 mg/kg (OECD-Methode 401)	
LC50 inhalativ - Ratte	> 24,3 mg/l (OECD-Methode 403)	
Glas, Oxide, Chemikalien (65997	17-3)	
LD50 (oral, Ratte)	> 2000 mg/kg Körpergewicht	
Ätz-/Reizwirkung auf die Haut	: Nicht eingestuft	
Schwere Augenschädigung/-reizung	: Nicht eingestuft	
Sensibilisierung der Atemwege/Haut	: Kann allergische Hautreaktionen verursachen.	
Keimzellmutagenität	: Nicht eingestuft	
Karzinogenität	: Nicht eingestuft	
Reproduktionstoxizität	: Nicht eingestuft	
Spezifische Zielorgan-Toxizität bei einmaliger Exposition	n : Nicht eingestuft	
Spezifische Zielorgan-Toxizität bei wiederholter Expositi	ion : Nicht eingestuft	
Butandioldimethacrylat (2082-81-7)		
LOAEC (inhalativ, Ratte, Gase, 90 Tage)	350 ppm	
NOAEL (oral, Ratte, 90 Tage)	300 mg/kg Körpergewicht	
2 Hydroxynronylmothogrylat (279)	42.02.4)	

2-Hydroxypropylmethacrylat (27813-02-1)

LOAEC (inhalativ, Ratte, Gase, 90 Tage)	300 ppm Ratte (OECD-Methode 413) 90 d
NOAEL (oral, Ratte, 90 Tage)	300 mg/kg Körpergewicht
NOAEC (inhalativ, Ratte, Gase, 90 Tage)	100 ppm
Aspirationsgefahr :	Nicht eingestuft

21.08.2024 (Ausgabedatum) AT - de 5/9

Sicherheitsdatenblatt

gemäß REACH-Verordnung (EG) 1907/2006 einschließlich Änderungsverordnung (EU) 2020/878

FHB II-P	
Viskosität, kinematisch	Nicht anwendbar
Butandioldimethacrylat (2082-81-7)	
Viskosität, kinematisch	5,29 mm²/s 20°C
2-Hydroxypropylmethacrylat (27813-02-1)	
Viskosität, kinematisch	8,88 mm²/s (20°C) (DIN 51562)

11.2. Angaben über sonstige Gefahren

Keine weiteren Informationen verfügbar

ABSCHNITT 12: Umweltbezogene Angaben

12.1. Toxizität

Ökologie - Allgemein : Giftig für Wasserorganismen, mit langfristiger Wirkung.

Gewässergefährdend, kurzfristige (akut) : Nicht eingestuft

Gewässergefährdend, langfristige (chronisch) : Giftig für Wasserorganismen, mit langfristiger Wirkung.

Butandioldimethacrylat (2082-81-7)		
EC50 - Krebstiere [1]	28,4 mg/l Daphnia magna (Wasserfloh)	
EC50 72h - Alge [1]	9,79 mg/l Desmodesmus subspicatus	
LOEC (chronisch)	13,5 mg/l Daphnia magna (Wasserfloh) 21 d	
NOEC chronisch Krustentier	5,09 mg/l Daphnia magna (Wasserfloh)	
NOEC chronisch Algen	4,97 mg/l Desmodesmus subspicatus	
2-Hydroxypropylmethacrylat (27813-02-1)		
LC50 - Fisch [1]	493 mg/l Leuciscus idus (Aland) 48 h	
EC50 - Krebstiere [1]	> 143 mg/l Daphnia magna (Wasserfloh), (OECD-Methode 202)	
EC50 72h - Alge [1]	> 97,2 mg/l Pseudokirchneriella subcapitata (OECD-Methode 201)	
NOEC chronisch Krustentier	45,2 mg/l Daphnia magna (Wasserfloh) (OECD-Methode 201) 21 d	
NOEC chronisch Algen	97,2 mg/l Pseudokirchneriella subcapitata (OECD-Methode 201) 72 h	
Dibenzoylperoxid (94-36-0)		
LC50 - Fisch [1]	0,0602 mg/l Oncorhynchus mykiss (Regenbogenforelle)	
EC50 - Krebstiere [1]	0,11 mg/l Daphnia magna (Wasserfloh)	
EC50 72h - Alge [1]	0,06 mg/l	

12.2. Persistenz und Abbaubarkeit

FHB II-P		
Persistenz und Abbaubarkeit Nicht schnell abbaubar		
Butandioldimethacrylat (2082-81-7)		
Persistenz und Abbaubarkeit Schnell abbaubar		
2-Hydroxypropylmethacrylat (27813-02-1)		
Persistenz und Abbaubarkeit	Schnell abbaubar	
Dibenzoylperoxid (94-36-0)		
Persistenz und Abbaubarkeit Nicht schnell abbaubar		
Glas, Oxide, Chemikalien (65997-17-3)		
Persistenz und Abbaubarkeit	Nicht schnell abbaubar	

Sicherheitsdatenblatt

gemäß REACH-Verordnung (EG) 1907/2006 einschließlich Änderungsverordnung (EU) 2020/878

12.3. Bioakkumulationspotenzial

Butandioldimethacrylat (2082-81-7)		
Verteilungskoeffizient n-Oktanol/Wasser (Log Pow) 3,1 20°C		
2-Hydroxypropylmethacrylat (27813-02-1)		
Verteilungskoeffizient n-Oktanol/Wasser (Log Pow) 0,97 Literatur		

12.4. Mobilität im Boden

Keine weiteren Informationen verfügbar

12.5. Ergebnisse der PBT- und vPvB-Beurteilung

Keine weiteren Informationen verfügbar

12.6. Endokrinschädliche Eigenschaften

Keine weiteren Informationen verfügbar

12.7. Andere schädliche Wirkungen

Keine weiteren Informationen verfügbar

ABSCHNITT 13: Hinweise zur Entsorgung

13.1. Verfahren der Abfallbehandlung

Verfahren der Abfallbehandlung

Empfehlungen für die Produkt-/Verpackung-

Abfallentsorgung

Zusätzliche Hinweise

: Inhalt/Behälter gemäß den Sortieranweisungen des zugelassenen Einsammlers entsorgen.

: Nur leere Behältnisse/Verpackungen zum Recycling geben.

Wird nicht als gefährlicher Abfall eingestuft, wenn Teil A und Teil B gemischt und vollständig ausgehärtet

Europäisches Abfallverzeichnis (LoW, EG 2000/532)

08 04 09* - Klebstoff- und Dichtmassenabfälle, die organische Lösemittel oder andere gefährliche Stoffe enthalten

20 01 27* - Farben, Druckfarben, Klebstoffe und Kunstharze, die gefährliche Stoffe enthalten

ABSCHNITT 14: Angaben zum Transport

Gemäß ADR / IMDG / IATA

ADR	IMDG	IATA
14.1. UN-Nummer oder ID-Nummer		
Kein Gefahrgut im Sinne der Transportvorschriften		
14.2. Ordnungsgemäße UN-Versan	dbezeichnung	
Nicht geregelt	Nicht geregelt	Nicht geregelt
14.3. Transportgefahrenklassen		
Nicht geregelt	Nicht geregelt	Nicht geregelt
14.4. Verpackungsgruppe		
Nicht geregelt	Nicht geregelt	Nicht geregelt
14.5. Umweltgefahren		
Nicht geregelt	Nicht geregelt	Nicht geregelt
Keine zusätzlichen Informationen verfügbar		

14.6. Besondere Vorsichtsmaßnahmen für den Verwender

Landtransport

Nicht geregelt

Seeschiffstransport

Nicht geregelt

Lufttransport

Nicht geregelt

21.08.2024 (Ausgabedatum) 24.07.2025 (Druckdatum)

AT - de

7/9

Sicherheitsdatenblatt

gemäß REACH-Verordnung (EG) 1907/2006 einschließlich Änderungsverordnung (EU) 2020/878

14.7. Massengutbeförderung auf dem Seeweg gemäß IMO-Instrumenten

Nicht anwendbar

ABSCHNITT 15: Rechtsvorschriften

15.1. Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische Rechtsvorschriften für den Stoff oder das Gemisch

EU-Verordnungen

REACH Anhang XVII (Beschränkungsliste)

Enthält keine Stoffe, die im REACH-Anhang XVII (Beschränkungsbedingungen) gelistet sind

REACH Anhang XIV (Zulassungsliste)

Enthält keine Stoffe, die in REACH Anhang XIV gelistet sind

REACH Kandidatenliste (SVHC)

Enthält keine Stoffe, die auf der REACH-Kandidatenliste gelistet sind

PIC-Verordnung (Vorherige Zustimmung nach Inkenntnissetzung)

Enthält keine Stoffe, die in der PIC-Verordnung gelistet sind (EU 649/2012, Aus- und Einfuhr gefährlicher Chemikalien)

POP-Verordnung (Persistente Organische Schadstoffe)

Enthält keine Stoffe, die in der POP-Verordnung gelistet sind (EU 2019/1021, Persistente Organische Schadstoffe)

Ozon-Verordnung (2024/590)

Enthält keine Stoffe, die in der Ozon-Abbau-Liste gelistet sind (Verordnung EU 2024/590, Stoffe die zum Abbau der Ozonschicht führen)

Verordnung zu Gütern mit doppeltem Verwendungszweck (Dual-Use-Verordnung)

Enthält keine Stoffe, die in der Dual-Use-Verordnung gelistet sind

Explosivstoff-Ausgangsstoff-Verordnung (EU 2019/1148)

Enthält keine Stoffe, die in der Explosivstoff-Ausgangsstoff-Verordnung gelistet sind (EU 2019/1148)

Drogen-Ausgangsstoff-Verordnung (EG 273/2004)

Enthält keine Stoffe, die in der Drogen-Ausgangsstoff-Verordnung gelistet sind (EG 273/2004, Stoffe die bei der unerlaubten Herstellung von Suchtstoffen und psychotropen Substanzen verwendet werden)

15.2. Stoffsicherheitsbeurteilung

Eine Stoffsicherheitsbeurteilung wurde nicht durchgeführt

ABSCHNITT 16: Sonstige Angaben

Abkürzungen und Akronyme:		
ADN	Europäisches Übereinkommen über die internationale Beförderung gefährlicher Güter auf Binnenwasserstraßen	
ADR	Europäisches Übereinkommen über die internationale Beförderung gefährlicher Güter auf der Straße	
ATE	Schätzwert der akuten Toxizität	
BKF	Biokonzentrationsfaktor	
BLV	Biologischer Grenzwert	
BOD	Biochemischer Sauerstoffbedarf (BSB)	
COD	Chemischer Sauerstoffbedarf (CSB)	
DMEL	Abgeleitete Expositionshöhe mit minimaler Beeinträchtigung	
DNEL	Abgeleitete Expositionshöhe ohne Beeinträchtigung	
EG-Nr.	Europäische Gemeinschaft Nummer	
EC50	Mittlere effektive Konzentration	
EN	Europäische Norm	
IARC	Internationale Agentur für Krebsforschung	

21.08.2024 (Ausgabedatum) 24.07.2025 (Druckdatum) AT - de

8/9

Sicherheitsdatenblatt

gemäß REACH-Verordnung (EG) 1907/2006 einschließlich Änderungsverordnung (EU) 2020/878

Abkürzungen und Akronyme:		
IATA	Verband für den internationalen Lufttransport	
IMDG	Gefahrgutvorschriften für den internationalen Seetransport	
LC50	Für 50 % einer Prüfpopulation tödliche Konzentration	
LD50	Für 50 % einer Prüfpopulation tödliche Dosis (mediane letale Dosis)	
LOAEL	Niedrigste Dosis mit beobachtbarer schädlicher Wirkung	
NOAEC	Konzentration ohne beobachtbare schädliche Wirkung	
NOAEL	Dosis ohne beobachtbare schädliche Wirkung	
NOEC	Höchste geprüfte Konzentration ohne beobachtete schädliche Wirkung	
OECD	Organisation für wirtschaftliche Zusammenarbeit und Entwicklung	
AGW	Arbeitsplatzgrenzwert	
PBT	Persistenter, bioakkumulierbarer und toxischer Stoff	
PNEC	Abgeschätzte Nicht-Effekt-Konzentration	
RID	Ordnung für die internationale Eisenbahnbeförderung gefährlicher Güter	
SDB	Sicherheitsdatenblatt	
STP	Kläranlage	
ThSB	Theoretischer Sauerstoffbedarf (ThSB)	
TLM	Median Toleranzgrenze	
VOC	Flüchtige organische Verbindungen	
CAS-Nr.	Chemical Abstract Service - Nummer	
N.A.G.	Nicht Anderweitig Genannt	
vPvB	Sehr persistent und sehr bioakkumulierbar	
ED	Endokriner Disruptor	

Vollständiger Wortlaut der H- und EUH-Sätze:		
Aquatic Acute 1	Akut gewässergefährdend, Kategorie 1	
Aquatic Chronic 1	Chronisch gewässergefährdend, Kategorie 1	
Aquatic Chronic 2	Chronisch gewässergefährdend, Kategorie 2	
Eye Irrit. 2	Schwere Augenschädigung/Augenreizung, Kategorie 2	
Org. Perox. B	Organische Peroxide, Typ B	
Skin Sens. 1	Sensibilisierung der Haut, Kategorie 1	
Skin Sens. 1B	Sensibilisierung der Haut, Kategorie 1B	
H241	Erwärmung kann Brand oder Explosion verursachen.	
H317	Kann allergische Hautreaktionen verursachen.	
H319	Verursacht schwere Augenreizung.	
H400	Sehr giftig für Wasserorganismen.	
H410	Sehr giftig für Wasserorganismen mit langfristiger Wirkung.	
H411	Giftig für Wasserorganismen, mit langfristiger Wirkung.	

Verwendete Einstufung und Verfahren für die Erstellung der Einstufung von Gemischen gemäß Verordnung (EG) 1272/2008 [CLP]:		
Skin Sens. 1	H317	Berechnungsmethoden
Aquatic Chronic 2	H411	Berechnungsmethoden

Diese Informationen basieren auf unserem aktuellen Wissen und sollen das Produkt nur im Hinblick auf Gesundheit, Sicherheit und Umweltbedingungen beschreiben. Sie dürfen also nicht als Garantie für spezifische Eigenschaften des Produktes ausgelegt werden.