

DE

LEISTUNGSERKLÄRUNG

DoP 0280

für fischer Highbond-Anchor FHB / FHB dyn / FDA (Verbundspreizdübel zur Verankerung im Beton)

-

1. Eindeutiger Kenncode des Produkttyps: DoP 0280

2. Verwendungszweck(e): Nachträgliche Befestigung in gerissenem oder ungerissenem Beton, siehe Anhang,

insbesondere die Anhänge B1 - B19.

3. Hersteller: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Deutschland

4. <u>Bevollmächtigter:</u> –

5. AVCP - System/e: 1

6. Europäisches Bewertungsdokument: EAD 330499-01-0601
Europäische Technische Bewertung: ETA-06/0171; 2021-06-23

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik

Notifizierte Stelle(n): 2873 TU Darmstadt

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhang C1

Widerstand für kombiniertes Versagen Herausziehen und Betonausbruch: Anhang C3

Widerstand für kegelförmigen Betonausbruch: Anhang C2

Randabstand zur Vermeidung von Spaltversagen bei Belastung: Anhang C2

Robustheit: Anhänge C2, C3

Montagedrehmoment: Anhänge B5 - B8

Minimaler Rand- und Achsabstand: Anhänge B5 - B8

Charakteristischer Widerstand bei Querzugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhang C1 Widerstand für Pry-out Versagen: Anhang C2 Widerstand Betonkantenbruch: Anhang C2

Verschiebungen unter kurz- und langzeitiger Belastung:

Verschiebungen unter kurz- und langzeitiger Belastung: Anhang C3

Charakteristische Widerstände und Verschiebungen für die seismischen Leistungskategorien C1 und C2:

Widerstand Zugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand Zugbelastung, Verschiebungen, Kategorie C2: NPD Widerstand Querzugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand Querzugbelastung, Verschiebungen, Kategorie C2: NPD

Faktor Ringspalt: NPD

Hygiene, Gesundheit und Umwelt (BWR 3)

Emission und/ oder Freisetzung von gefährlichen Stoffen: NPD

8. Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Dr.-Ing. Oliver Geibig, Geschäftsführer Business Units & Engineering Tumlingen, 2021-06-30

Jürgen Grün, Geschäftsführer Chemie & Qualität

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V43.xlsm 1 / 1

Besonderer Teil

1 Technische Beschreibung des Produkts

Der fischer Highbond-Anker FHB / FHB dyn / FDA ist ein Verbundspreizdübel, der aus einer Mörtelkartusche mit FIS HB und einem Stahlteil besteht. Das Stahlteil besteht aus verzinktem Stahl oder aus nichtrostendem Stahl.

Die Kraftübertragung erfolgt über die mechanische Verzahnung einzelner Konen im Injektionsmörtel und weiter über eine Kombination aus Halte- und Reibungskräften im Verankerungsgrund (Beton).

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

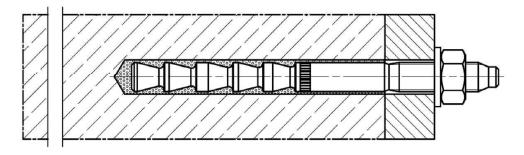
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Lasten)	Siehe Anhang C 1 – C 3, B 5 – B 8
Charakteristischer Widerstand unter Querlast (statische und quasi-statische Lasten)	Siehe Anhang C 1 und C 2
Verschiebungen für Kurzzeit- und Langzeitbelastung	Siehe Anhang C3
Charakteristischer Widerstand und Verschiebungen für die seismischen Leitungskategorien C1 und C2	Leistung nicht bewertet

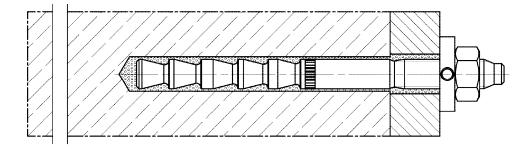
3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1.


Einbauzustände Teil 1, FHB / FHB N

fischer Highbond-Anker FHB / FHB N mit fischer Injektionssystem FIS HB

Vorsteckmontage

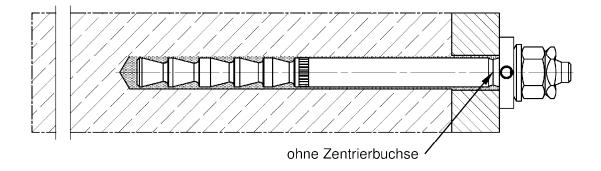
Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

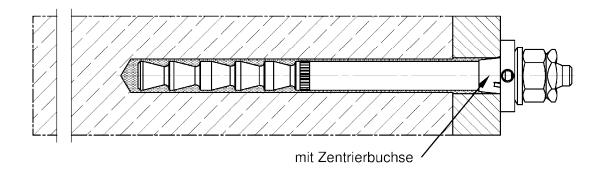
fischer Highbond-Anker FHB / FHB dyn / FDA

Produktbeschreibung

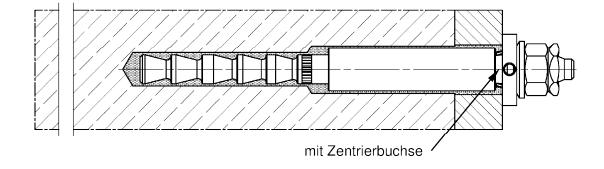
Einbauzustände Teil 1, fischer Highbond-Anker FHB / FHB N


Anhang A 1

Appendix 3 / 37


Einbauzustände Teil 2, FHB dyn

fischer Highbond-Anker dynamic FHB dyn mit fischer Injektionssystem FIS HB


Vorsteckmontage ohne Querkrafthülse, FHB dyn (Ringspalt mit Mörtel verfüllt)

Durchsteckmontage ohne Querkrafthülse, FHB dyn (Ringspalt mit Mörtel verfüllt)

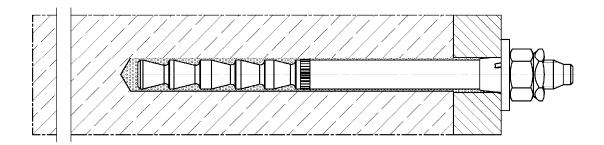
Durchsteckmontage mit Querkrafthülse, FHB dyn V (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB / FHB dyn / FDA

Produktbeschreibung

Einbauzustände Teil 2, fischer Highbond-Anker FHB dyn

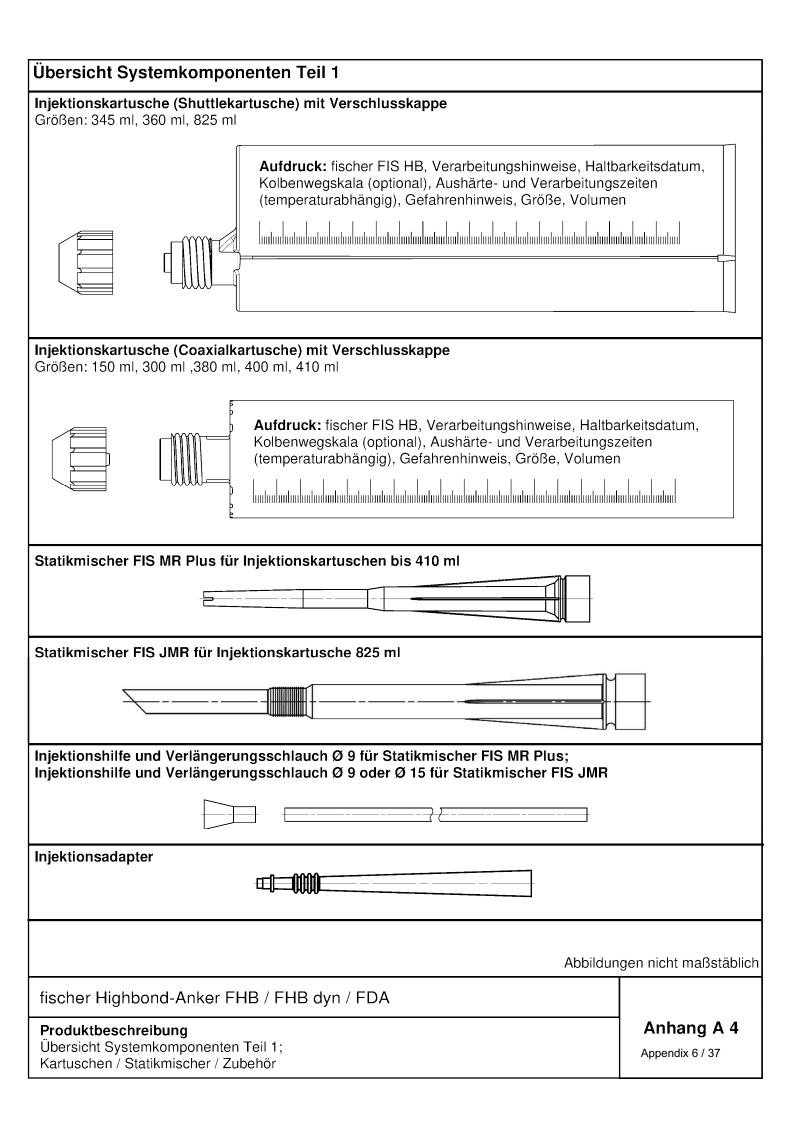

Anhang A 2

Appendix 4 / 37

Einbauzustände Teil 3, FDA

fischer Dynamic-Anker FDA mit fischer Injektionssystem FIS HB

Durchsteckmontage


Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB / FHB dyn / FDA

Produktbeschreibung Einbauzustände Teil 3, fischer Dynamic-Anker FDA

Anhang A 3

Appendix 5 / 37

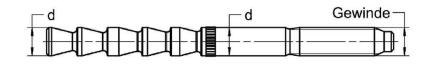
Übersicht Systemkomponenten Teil 2 fischer Highbond-Anker FHB / FHB N (alternative Bezeichnung) fischer Ankerstange FHB-A / FHB-A N; Größe: M10x60 alternative Ausführung fischer Ankerstange FHB-A / FHB-A N; Größe: M12x80 fischer Ankerstange FHB-A / FHB-A N; Größen: M12x100, M16x125, M20x170, M24x220 fischer Highbond-Anker dynamic FHB dyn ohne Querkrafthülse (in montiertem Zustand) alternative Ausführung: Sechskantmutter mit fischer Highbond-Anker dynamic FHB dyn V mit Querkrafthülse kugeliger Auflagefläche (in montiertem Zustand) fischer Ankerstange FHB-A dyn; Größen: M12, M16, M20, M24 alternative Spitze fischer Dynamic-Anker FDA fischer Ankerstange FDA-A; Größen: M12, M16 alternative Spitze Abbildungen nicht maßstäblich fischer Highbond-Anker FHB / FHB dyn / FDA Anhang A 5 Produktbeschreibung Übersicht Systemkomponenten Teil 2; Appendix 7 / 37 Stahlteile

Übersicht Systemkomponenten Teil 3 Kegelpfanne fischer Verfüllscheibe (verschiedene Ausführungen) ohne Bohrung radial schräg axial Sechskantmutter, mit Sechskantmutter, Sechskantmutter Sicherungsmutter kugeliger Auflagefläche niedrig Kugelscheibe Unterlegscheibe Zentrierbuchse nur Durchsteckmontage; FHB dyn und FDA Querkrafthülse (nur FHB dyn V) Reinigungsbürste BS Ausbläser ABP mit Druckluftdüse oder ABG Abbildungen nicht maßstäblich

Anhang A 6

Appendix 8 / 37

fischer Highbond-Anker FHB / FHB dyn / FDA


Produktbeschreibung

Übersicht Systemkomponenten Teil 3;

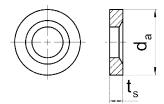

Stahlteile / Reinigungsbürste / Ausbläser

Tabelle A7.1: Abmessungen Systemkomponenten, FHB / FHB N								
Bezeichnung		FHB 10x60	FHB 12x80	FHB 12x100	FHB 16x125	FHB 20x170	FHB 24x220	
Gewinde		[-]	M10	M12	M12	M16	M20	M24
Ankerstange	d		10	12	12	16,5	22	24,5
Kegelpfanne /	≥ d _a	[mm]	26	30	30	38	46	54
fischer Verfüllscheibe	te] [6	6	6	7	8	10

Ankerstange:

Kegelpfanne / fischer Verfüllscheibe (verschiedene Ausführungen siehe Anhang A 6)

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB / FHB dyn / FDA

Produktbeschreibung

Abmessungen Systemkomponenten, FHB / FHB N

Anhang A 7

Appendix 9 / 37

Tabelle A8.1: Abmessungen Systemkomponenten, FHB dyn / FHB dyn V								
Bezeichnung			FHB dyn ohne Querkrafthülse				FHB dyn V mit Querkrafthülse	
			FHB dyn 12x100	FHB dyn 16x125	FHB dyn 20x170	FHB dyn 24x220	FHB dyn 12x100 V	FHB dyn 16x125 V
Gewinde		[-]	M12	M16	M20	M24	M12	M16
	d		12	16,5	22	24,5	12	16,5
Ankerstange	L _{min}		135	168	220	280	140	173
	L _{max}		332	365	415	475	337	367
Zontriorbuohoo	D_z		11,8	16,3	21,8	24,3	11,8	16,3
Zentrierbuchse	Lz	[mm]	11	13	15	15	11	13
Kegelpfanne /	≥ da	[mm]	30	38	46	54	30	38
fischer Verfüllscheibe	ts		6	7	8	10	6	7
	$L_{Q,min}$						40	55
Querkrafthülse	L _{Q,max}						230	245
	DQ						17,5	23,5

Ankerstange:

Zentrierbuchse: (nur Durchsteckmontage)

Kegelpfanne / fischer Verfüllscheibe: (verschiedene Ausführungen siehe Anhang A 6)

Querkrafthülse:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB / FHB dyn / FDA

Produktbeschreibung

(nur FHB dyn V)

Abmessungen Systemkomponenten, FHB dyn / FHB dyn V

Anhang A 8

Appendix 10 / 37

Tabelle A9.1: Abmessungen Systemkomponenten, FDA				
Bezeichnung			FDA 12x100	FDA 16x125
Gewinde		[-]	M12	M16
	d		12	16,5
Ankerstange	L _{min}		135	168
	L _{max}		332	365
Zentrierbuchse	Dz	[mm]	11,8	16,3
Zentherbuchse	Lz	[mm]	11	13
	≥ d _a		30	40
Unterlegscheibe	t _{s,min}		3,5	4
	t _{s,max}		7	8

Ankerstange:

Zentrierbuchse:

Unterlegscheibe:

Abbildungen nicht maßstäblich

Gewinde

fischer Highbond-Anker FHB / FHB dyn / FDA

Produktbeschreibung

Abmessungen Systemkomponenten, FDA

Anhang A 9

Appendix 11 / 37

Tabe	Tabelle A10.1: Werkstoffe, FHB / FHB N verzinkt							
Teil	Bezeichnung		Material					
1	Injektionskartusche		Mörtel, Härter, Füllstoffe					
			Stahl					
	Stahlart	galvanisch v	verzinkt (gvz)	feuerverzinkt (hdg)				
		M10 bis M16	M20 bis M24	M10 bis M24				
		Festigkeitsklasse 5.8	$f_{uk} = 550 \text{ N/mm}^2$	Festigkeitsklasse 8.8				
		Festigkeitsklasse 8.8	$f_{yk} = 440 \text{ N/mm}^2$	EN ISO 898-1:2013				
	fischer Ankerstange FHB-A und FHB-A N	EN ISO 898-1:2013	EN ISO 898-1:2013	feuerverzinkt ≥ 40 μm				
2		galv. verzinkt ≥ 5 μm	galv. verzinkt ≥ 5 μm Zn5/An (A2K) nach EN ISO 4042:2018	EN ISO 10684:2004				
-		Zn5/An (A2K) nach		A ₅ > 12% Bruchdehnung				
		EN ISO 4042:2018	$A_5 > 12\%$ Bruchdehnung	Lackschicht				
		A ₅ > 12% Bruchdehnung	beschichtet	beschichtet (M16 bis M24)				
		beschichtet	Describer					
3	Unterlegscheibe		galv. verzinkt ≥ 5 μm					
	ISO 7089:2000	Zn5/An (A2K) nach	EN ISO 4042:2018	EN ISO 10684:2004				
١,	Kegelpfanne oder	galv. verzi	inkt ≥ 5 μm	feuerverzinkt ≥ 40 μm				
4	fischer Verfüllscheibe ähnlich DIN 6319-G	Zn5/An (A2K) nach EN ISO 4042:2018		EN ISO 10684:2004				
	annon bir oo ro a	Festiakei [.]	tsklasse 8	Festigkeitsklasse 8				
5	Sechskantmutter		98-2:2012	EN ISO 898-2:2012				
5	Secriskantinutter		nkt ≥ 5 μm,	feuerverzinkt ≥ 40 μm				
	Zn5/An (Ã2K) nach EN ISO 4042:2018			EN ISO 10684:2004				

fischer Highbond-Anker FHB / FHB dyn / FDA	
Produktbeschreibung Werkstoffe, FHB / FHB N verzinkt	Anhang A 10 Appendix 12 / 37

Teil	Bezeichnung	Material				
1	Injektionskartusche		Mörtel, Härter, Füllstoffe			
		Nichtrosten	der Stahl R	Hochkorrosions- beständiger Stahl HCR		
	Stahlart	gemäß EN 1 der Korrosionswiders nach EN 19	gemäß EN 10088-1:2014 der Korrosions- widerstandsklasse CRC V nach EN 1993-1-4:2015			
		M10 bis M16	M20 bis M24	M10 bis M24		
		$f_{uk} = 800 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	$\begin{array}{c} f_{uk} = 700 \ N/mm^2 \\ f_{yk} = 560 \ N/mm^2 \end{array}$	$f_{uk} = 700 \text{ N/mm}^2$ $f_{yk} = 560 \text{ N/mm}^2$		
		EN ISO 3506-1:2009	EN ISO 3506-1:2009	EN ISO 3506-1:2009		
2	fischer Ankerstange FHB-A und FHB-A N	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462;	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462;	1.4565; 1.4529 EN 10088-1:2014 A ₅ > 12% Bruchdehnung		
		EN 10088-1:2014	EN 10088-1:2014	beschichtet		
		A ₅ > 12% Bruchdehnung	A ₅ > 12% Bruchdehnung	Describinet		
		beschichtet	beschichtet			
3	Unterlegscheibe ISO 7089:2000	1.4571; 1.44	404; 1.4578; 439; 1.4362; 8-1:2014	1.4565; 1.4529; EN 10088-1:2014		
4	Kegelpfanne oder fischer Verfüllscheibe ähnlich DIN 6319-G	1.4401; 1.44 1.4571; 1.44 EN 1008	1.4565; 1.4529; EN 10088-1:2014			
5	Sechskantmutter	EN ISO 35 1.4401; 1.44	sse 70 oder 80 506-2:2020 404; 1.4578;	Festigkeitsklasse 70 oder 80 EN ISO 3506-2:2020		
			439; 1.4362; 8-1:2014	1.4565; 1.4529; EN 10088-1:2014		

fischer Highbond-Anker FHB / FHB dyn / FDA	
Produktbeschreibung	Anl
Werkstoffe FHR / FHR N nichtrostender Stahl	1

Teil	Bezeichnung	Material				
1	Injektionskartusche	Mörtel, Härte	er, Füllstoffe			
		Stahl	Hochkorrosionsbeständiger Stahl HCR			
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionswiderstandsklasse CRC V nach EN 1993-1-4:2015			
		M12 bis M24	M12 bis M16			
		Festigkeitsklasse 8.8	EN ISO 3506-1:2009			
		EN ISO 898-1:2013	1.4529			
2	fischer Ankerstange FHB-A dyn	galv. verzinkt ≥ 5 μm Zn5/An (A2K) nach EN ISO 4042:2018	EN 10088-1:2014 f _{uk} ≥ 700 N/mm²			
	,	A ₅ > 12% Bruchdehnung	A ₅ > 12 % Bruchdehnung			
		beschichtet	beschichtet			
3	Zentrierbuchse	Kuns	tstoff			
4	Kegelpfanne oder fischer Verfüllscheibe ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm Zn5/An (A2K) nach EN ISO 4042:2018	1.4529 EN 10088-1:2014			
5	Kugelscheibe	galv. verzinkt ≥ 5 μm Zn5/An (A2K) nach EN ISO 4042:2018	1.4529 EN 10088-1:2014			
6a	Sechskantmutter	Festigkeitsklasse 8	Festigkeitsklasse 70			
6b	Sechskantmutter mit kugeliger Auflagefläche	EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm Zn5/An (A2K) nach EN ISO 4042:2018	EN ISO 3506-2:2020 1.4529 EN 10088-1:2014			
7a	Sicherungsmutter	goly vorsinkt > F. um	1.4529			
7b	Sechskantmutter, niedrig	galv. verzinkt ≥ 5 μm Zn5/An (A2K) nach EN ISO 4042:2018	EN 10088-1:2014			
8	Querkrafthülse	galv. verzinkt ≥ 5 μm Zn5/An (A2K) nach EN ISO 4042:2018				

fischer Highbond-Anker FHB / FHB dyn / FDA	
Produktbeschreibung Werkstoffe, FHB dyn	Anhang A 12 Appendix 14 / 37

Tabelle A13.1: Werkstoffe, FDA				
Teil	Bezeichnung	Material		
1	Injektionskartusche	Mörtel, Härter, Füllstoffe		
		Stahl		
	Stahlart	verzinkt		
		M12 bis M16		
		Festigkeitsklasse 8.8		
		EN ISO 898-1:2013		
2	fischer Ankerstange FDA-A	galv. verzinkt ≥ 5 μm Zn5/An (A2K) nach EN ISO 4042:2018		
		A ₅ > 12 % Bruchdehnung		
		beschichtet		
3	Zentrierbuchse	Kunststoff		
4	Unterlegscheibe	galv. verzinkt ≥ 5 μm, Zn5/An (A2K) nach EN ISO 4042:2018		
5	Sechskantmutter	Festigkeitsklasse 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm, Zn5/An (A2K) nach EN ISO 4042:2018		
6	Sicherungsmutter	galv. verzinkt ≥ 5 μm, Zn5/An (A2K) nach EN ISO 4042:2018		

fischer Highbond-Anker FHB / FHB dyn / FDA
--

Spezifizierung des Verwendungszwecks (Teil 1), FHB / FHB N

Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien, FHB / FHB N

		fischer Highbo	ond-Anker	FHB / FHB N mit FIS HB		
Hammerbohren mit Standardbohrer	E-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6					
Hammerbohren mit Hohlbohrer (fischer "FHD"; Helle Expert"; Bosch "Spe		alle Größen; Bohrernenndurchmesser (d₀) 12 mm bis 28 mm				
Hilti "TE-CD, TE-YD' DreBo "D-Plus"; Dre	,					
Statische und ungerissene Beto		alle Größen;		Tabellen: C1.1		
Belastung, im	gerissenen Beton	M10 bis M24		C2.1 C3.1		
I1 Nutzungs-	trockener oder nasser Beton	al	le Größen;	M10 bis M24		
kategorie I2	wassergefülltes Bohrloch	al	le Größen;	M10 bis M24		
Einbaurichtung		horizontale und vertikale M	D Iontage nac	23 ch unten und oben (Überkopfmontage		
Einbaumethode		Vor- oder Durchsteckmontage				
Einbautemperatur 1)		FIS HB:	$T_{i,min} = -5$	°C bis T _{i,max} = +40 °C		
Gebrauchs-	Temperatur- bereich I:	-40 °C bis +40 °C		e Kurzzeittemperatur +40 °C; e Langzeittemperatur +24 °C)		
temperaturbereiche	Temperatur- bereich II:	-40 °C bis +80 °C		e Kurzzeittemperatur +80°C; e Langzeittemperatur +50°C)		

¹⁾ Für die übliche Temperaturveränderung nach dem Einbau

fischer Highbond-Anker FHB / FHB dyn / FDA
Verwendungszweck

Anhang B 1

Spezifizierung des Verwendungszwecks (Teil 2), FHB dyn Tabelle B2.1: Übersicht Nutzungs- und Leistungskategorien, FHB dyn fischer Highbond-Anker dynamic FHB dyn mit FIS HB FHB-A dyn, ohne Querkrafthülse (Darstellung mit Zentrierbuchse; Verwendung nur bei Durchsteckmontage) FHB-A dyn V, mit Querkrafthülse FHB dyn V FHB dyn Hammerbohren mit Standardbohrer alle Größen; Hammerbohren mit alle Größen: Bohrernenndurchmesser (d₀) Hohlbohrer Bohrernenndurchmesser (d₀) 14 mm und 18 mm (fischer "FHD", Heller "Duster 14 mm bis 28 mm Bohrernenndurchmesser (d₁) Expert"; Bosch "Speed Clean"; 20 mm und 28 mm Hilti "TE-CD, TE-YD"; DreBo "D-Plus"; DreBo "D-Max") ungerissenen Tabellen: Tabellen: Statische und Beton C1.1 alle Größen; C1.1 alle Größen; quasi-statische M12 bis M24 C2.1 C2.1 M12 und M16 gerissenen Belastung, im C3.1 C3.1 Beton trockener oder 11 alle Größen: M12 bis M24 alle Größen: M12 und M16 nasser Beton Nutzungskategorie wassergefülltes 12 alle Größen; M12 und M16 alle Größen; M12 bis M24 Bohrloch D3 ge)

Einbaurichtung		horizontale und vertikale M	lontage nac	rb unten und oben (Überkopfmontage
Einbaumethode		Vor- oder Durchsteckm	ontage	Durchsteckmontage
Einbautemperatur 1)		FIS HB:	$T_{i,min} = -5$	$^{\circ}$ C bis $T_{i,max} = +40 ^{\circ}$ C
Gebrauchs-	Temperatur- bereich I:	-40 °C bis +40 °C		e Kurzzeittemperatur +40 °C; e Langzeittemperatur +24 °C)
temperaturbereiche	Temperatur- bereich II:	-40 °C bis +80 °C	s +80 °C (maximale Kurzzeittemperatur +80 maximale Langzeittemperatur +50	

¹⁾ Für die übliche Temperaturveränderung nach dem Einbau

fischer Highbond-Anker FHB / FHB dyn / FDA	
Verwendungszweck Spezifikationen (Teil 2), FHB dyn	Anhang B 2 Appendix 17 / 37

Spezifizierung des Verwendungszwecks (Teil 3), FDA

Tabelle B3.1: Übersicht Nutzungs- und Leistungskategorien, FDA

		fischer D	vnamic-Λn	ker FDA mit FIS HB		
			упаппс-Ап			
Hammerbohren mit Standardbohrer	54444000000					
Hammerbohren mit Hohlbohrer (fischer "FHD"; Helle Expert"; Bosch "Spe Hilti "TE-CD, TE-YD" DreBo "D-Plus"; Dre	ed Clean"; ';	alle Größen; Bohrernenndurchmesser (d₀) 14 mm und 18 mm				
Statische und quasi-statische Belastung, im	ungerissenen Beton gerissenen Beton	alle Größen; M12 und M16		Tabellen: C1.1 C2.1 C3.1		
I1 Nutzungs-	trockener oder nasser Beton	all	e Größen; I	M12 und M16		
kategorie I2	wassergefülltes Bohrloch	alle Größen; M12 und M16				
Einbaurichtung		horizontale und vertikale M	D ontage nac	3 ch unten und oben (Überkopfmontage)		
Einbaumethode			Durchsted	kmontage		
Einbautemperatur 1)		FIS HB:	$T_{i,min} = -5$	°C bis T _{i,max} = +40 °C		
Gebrauchs-	Temperatur- bereich I:	-40 °C bis +40 °C		e Kurzzeittemperatur +40°C; e Langzeittemperatur +24°C)		
temperaturbereiche	Temperatur- bereich II:	-40 °C bis +80 °C		e Kurzzeittemperatur +80 °C; e Langzeittemperatur +50 °C)		

¹⁾ Für die übliche Temperaturveränderung nach dem Einbau

Spezifikationen (Teil 3), FDA

Anhang B 3

Appendix 18 / 37

Spezifizierung des Verwendungszwecks (Teil 4)

Verankerungsgrund:

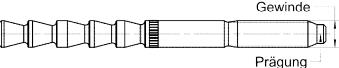
 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016+A2:2021

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionswiderstandsklassen nach Anhang A 11 Tabelle A11.1 (FHB / FHB N) bzw. Anhang A 12 Tabelle A12.1 (FHB dyn).

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- · Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit:
 - EN 1992-4:2018 und
 - EOTA Technical Report TR 055, Fassung Februar 2018

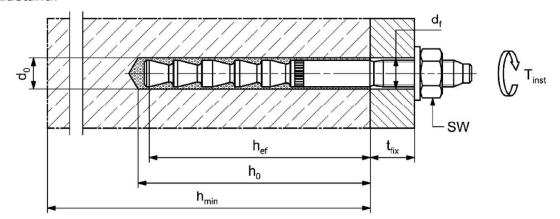

Einbau

- Einbau des Dübels durch entsprechend geschulten Personals unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- Überkopfmontage erlaubt

fischer Highbond-Anker FHB / FHB dyn / FDA	
Verwendungszweck Spezifikationen (Teil 4)	Anhang B 4 Appendix 19 / 37

Tabelle B5.1: Montagekennwerte für fischer Highbond-Anker FHB / FHB N											
Bezeichnung				FHB 10x60	FHB 12x80		∃B :100		1B 125	FHB 20x170	FHB 24x220
Gewinde			[-]	M10	M12	М	12	М	16	M20	M24
Schlüsselweite		SW		17	19	1	9	2	4	30	36
Bohrernenndurchm	nesser	d ₀] [12	14	1	4	1	8	24	28
Bohrlochtiefe		h ₀]	65	85	1()5	10	30	175	225
Effektive Veranker	ungstiefe	h _{ef}		60	80	1(00	12	25	170	220
Minimale Dicke des Betonbauteils	S	h _{min}		120	160	130	200	160	250	220	440
Minimaler Achsabs	stand	Smin	60	60 8	00	100	100	100	100	90	100
Minimaler Randabs	stand	Cmin		80	200	100	200	100	80	180	
Für $h_{min} \le h \le 2h_{ef}$:	$s_1 \ge s_{min} = 1$ $c_1 \ge c_{min} = 1$		[mm]			[(3 •	C ₁ + S ₁)	• h] ≥ 8	8000		
Berechnung c _{erf} be gegebenen s ₁ und					-	Cerf 2	≥ (8800	0/h – s₁) / 3		-
Berechnung s _{erf} be gegebenen c ₁ und						Serf	≥ 8800	0/h – 3	• C ₁		
Durchmesser des	Vorsteck- montage	df		12	14	1	4	1	8	22	26
Durchgangsloch im Anbauteil	Durchsteck- montage	df		14	16	1	6	2	0	26	30
Montagedrehmome	ent	T_{inst}	[Nm]	20	40	4	.0	6	0	100	120

fischer Ankerstange FHB-A / FHB-A N


Prägung fischer Ankerstange:

Werkzeichen, Gewindedurchmesser, Verankerungstiefe z.B.: 16 x 125

Bei Ankerstangen der Festigkeitsklasse 5.8 zusätzlich "5.8"

Bei nichtrostendem Stahl zusätzlich "R" und bei hochkorrosionsbeständiger Stahl zusätzlich "HCR"

Einbauzustand:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB / FHB dyn / FDA

Verwendungszweck

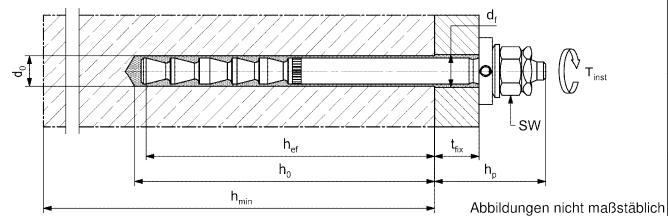
Montagekennwerte fischer Highbond-Anker FHB / FHB N

Anhang B 5

Appendix 20 / 37

Tabelle B6.1: Montagekennwerte für fischer Highbond-Anker dynamic ohne Querkrafthülse FHB dyn

Bezeichnung			FHB dyn FHB dyn 12x100 16x125		FHB dyn 20x170	FHB dyn 24x220		
Gewinde		[-]	М	12	M16		M20	M24
Schlüsselweite	SW		1	9	2	<u>!</u> 4	30	36
Bohrernenndurchmesser	d ₀		1	4	1	8	24	28
Bohrlochtiefe	h _{0,min}		1()5	10	30	175	225
Effektive Verankerungstiefe	h_{ef}		1(00	12	25	170	220
Minimale Dicke des Betonbauteils	h_{min}		130	200	160	250	220	440
Minimaler Achsabstand	Smin		100	100	100	100	80	180
Minimaler Randabstand	Cmin		200	100	200	100	80	180
Für $h_{min} \le h \le 2h_{ef}$: $S_1 \ge S_{min} = C_1 \ge C_{min} = C_1$		[mm]	[(3 •	C1 + S1)	• h] ≥ 88	000		
Berechnung c _{erf} bei gegebenen s ₁ und h			$c_{erf} \ge (88000/h - s_1) / 3$					-
Berechnung s _{erf} bei gegebenen c ₁ und h			Se	s _{erf} ≥ 88000/h − 3 • c ₁		C1		
Durchmesser des Durchgangslochs im Anbauteil	df		1	5	1	9	25	29
Anbauteildicke	$t_{\text{fix,min}}$		3	3	1	0	12	14
Alibautellulcke	t _{fix,max}		20				00	
Überstand Ankerstange	$h_{\text{p},\text{min}}$		30 -	+ t _{fix}	35	+ t _{fix}	40 + t _{fix}	50 + t _{fix}
Montagedrehmoment	T_{inst}	[Nm]	4	0	6	0	100	120


fischer Ankerstange FHB-A dyn

Prägung fischer Ankerstange:

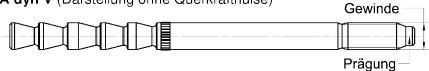
Werkzeichen, Gewindedurchmesser, Verankerungstiefe, Anwendungsbereich z.B.: 16 x 125 dyn Bei hochkorrosionsbeständigem Stahl zusätzlich "HCR".

Einbauzustand: (Darstellung ohne Zentrierbuchse; Vorsteckmontage)

fischer Highbond-Anker FHB / FHB dyn / FDA

Verwendungszweck

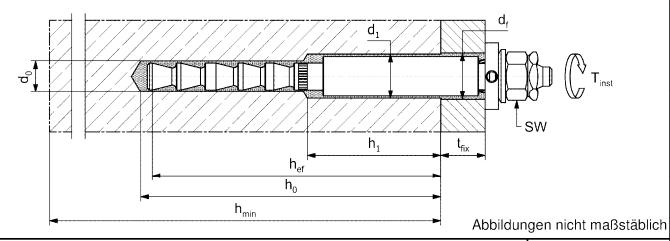
Montagekennwerte fischer Highbond-Anker dynamic FHB dyn (ohne Querkrafthülse)


Anhang B 6

Appendix 21 / 37

Tabelle B7.1: Montagekennwerte für fischer Highbond-Anker dynamic mit Querkrafthülse FHB dyn V

Bezeichnung			FHB-A dyı	า 12x100 V	FHB-A dyn 16x125 V		
Gewinde			M	12	M16		
Schlüsselweite	selweite SW			9	24		
Bohrernenndurchmesser	d ₀		1	4	1	8	
Bohrlochtiefe	h _{0,min}		1	10	13	35	
Bohrernenndurchmesser	d₁		2	<u>.</u> 0	2	8	
Bohrlochtiefe	$h_{1,\text{min}}$		3	5	5	0	
Effektive Verankerungstiefe	h _{ef,}		10	05	13	30	
Minimale Dicke des Betonbauteils	h _{min}		130	200	160	250	
Minimaler Achsabstand	Smin		100	100	100	100	
Minimaler Randabstand	Cmin	[mm]	200	100	200	100	
				$[(3 \cdot c_1 + s_1)$	• h] ≥ 88000		
Berechnung c _{erf} bei gegebenen s ₁ und h				c _{erf} ≥ (8800	0/h - s ₁) / 3		
Berechnung s _{erf} bei gegebenen c ₁ und h			s _{erf} ≥ 88000/h − 3 • c ₁				
Durchmesser des Durchgangslochs im Anbauteil	df		21 29			9	
Anbauteildicket_fix,min			8 10			0	
Anbautendicke	t _{fix,max}		200				
Montagedrehmoment	T_{inst}	[Nm]	4	0	6	0	


fischer Ankerstange FHB-A dyn V (Darstellung ohne Querkrafthülse)

Prägung fischer Ankerstange:

Werkzeichen, Gewindedurchmesser, Verankerungstiefe, Anwendungsbereich z.B.: 16 x 125 dyn V

Einbauzustand:

fischer Highbond-Anker FHB / FHB dyn / FDA

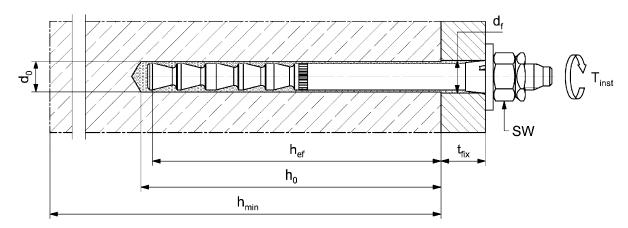
Verwendungszweck

Montagekennwerte fischer Highbond-Anker dynamic FHB dyn V (mit Querkrafthülse)

Anhang B 7

Appendix 22 / 37

Bezeichnung			FDA	12x100	FDA 1	FDA 16x125		
Gewinde	[-]	N	112	M1	16			
Schlüsselweite	SW			19	24	4		
Bohrernenndurchmess	er do			14	18	8		
Bohrlochtiefe	$h_{0, min}$		-	05	13	30		
Effektive Verankerungs	stiefe h _{ef}		100 125			.5		
Minimale Dicke des Betonbauteils	h _{min}		130	200	160	250		
Minimaler Achsabstand	d S _{min}		100	100	100	100		
Minimaler Randabstan	d Cmin		200	100	200	100		
$E \cap I \cap $	\geq s _{min} = 100 mm \geq c _{min} = 100 mm	[mm]	$[(3 \cdot c_1 + s_1) \cdot h] \ge 88000$					
Berechnung c _{erf} bei gegebenen s ₁ und h			$C_{erf} \ge (88000/h - s_1) / 3$					
Berechnung s _{erf} bei gegebenen c ₁ und h				s _{erf} ≥ 8800	0/h − 3 • c₁			
Durchmesser des Durchgangslochs im A	nbauteil d _f		15 19					
Anbauteildicke	tfix,min			12	10	6		
Alibautelluicke	t _{fix,max}		200					
Montagedrehmoment	T_{inst}	[Nm]		40	60	0		


fischer Ankerstange FDA-A

Prägung fischer Ankerstange:

Werkzeichen, Gewindedurchmesser, Verankerungstiefe, Anwendungsbereich z.B.: 16 x 125 dyn

Einbauzustand:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB / FHB dyn / FDA

Verwendungszweck

Montagekennwerte fischer Dynamic-Anker FDA

Anhang B 8

Appendix 23 / 37

Tabelle B9.1: Kennwerte der Reinigungsbürste BS (Stahlbürste mit Stahlborsten)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d۵	[mm]	12	14	18	24	28
Stahlbürsten- durchmesser	dь	[mm]	14	16	20	26	30

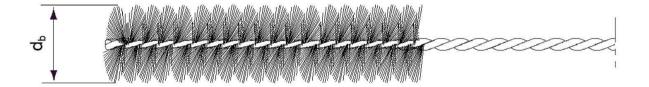


 Tabelle B9.2:
 Verarbeitungszeit twork und Aushärtezeit tcure (FIS HB)

Temperatur im Verankerungsgrund ¹⁾ [°C]	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit ²⁾ t _{cure}				
-5 bis 0 ³⁾	-	6 h				
> 0 bis 5 ³⁾	-	3 h				
> 5 bis 10	15 min	90 min				
> 10 bis 20	6 min	35 min				
> 20 bis 30	4 min	20 min				
> 30 bis 40	2 min	12 min				

¹⁾ Die Temperatur im Verankerungsgrund darf während der Aushärtezeit -5°C nicht unterschreiten

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB / FHB dyn / FDA

Verwendungszweck

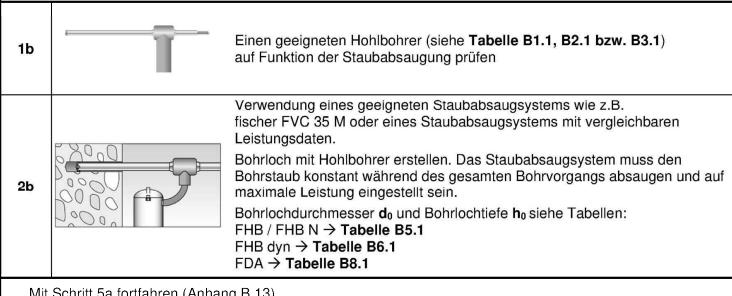
Kennwerte der Reinigungsbürste (Stahlbürste);

Verarbeitungszeit und Aushärtezeit

Anhang B 9

Appendix 24 / 37

²⁾ Im nassen Beton oder wassergefülltem Bohrloch ist die Aushärtezeit zu verdoppeln

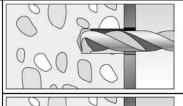

³⁾ Minimale Kartuschentemperatur +5°C

Übersicht Montageanleitungen										
	Ankertyp									
	FHB / FHB N	FHB dyn	FHB dyn V	FDA						
Bohren und Reinigen Hammerbohren mit Standardbohrer	Anhang B 11 Schritt 1a bis 4a	Anhang B 11 Schritt 1a bis 4a	Anhang B 12 Schritt 1c bis 4c	Anhang B 11 Schritt 1a bis 4a						
Bohren und Reinigen Hammerbohren mit Hohlbohrer	Anhang B 11 Schritt 1b bis 2b	Anhang B 11 Schritt 1b bis 2b	Anhang B 12 Schritt 1d bis 2d	Anhang B 11 Schritt 1b bis 2b						
Kartuschenvorbereitung	Anhang B 13 Schritt 5a bis 7a									
Vorsteckmontage	Anhang B 14 Schritt 8a bis 12a	Anhang B 16 Schritt 8c bis 12c	-	-						
Durchsteckmontage	Anhang B 15 Schritt 8b bis 11b	Anhang B 17 Schritt 8d bis 11d	Anhang B 18 Schritt 8e bis 11e	Anhang B 19 Schritt 8f bis 11f						

fischer Highbond-Anker FHB / FHB dyn / FDA	
Verwendungszweck Übersicht Montageanleitungen	Anhang B 10 Appendix 25 / 37

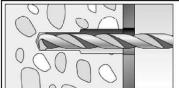
Montageanleitung Teil 1; Bohren und Reinigen FHB, FHB N, FHB dyn und FDA Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer) Bohrloch erstellen. Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe Tabellen: 1a FHB / FHB N → Tabelle B5.1 FHB dyn → Tabelle B6.1 FDA → Tabelle B8.1 Bohrloch reinigen. Bohrloch zweimal ausblasen Bei Bohrdurchmesser do < 24 mm mit Handausbläser oder ölfreier Druckluft (≥ 6 bar). 2a Bei Bohrdurchmesser d₀ ≥ 24 mm mit ölfreier Druckluft (≥ 6 bar). Druckluftdüse verwenden. Bohrloch mit Stahlbürste zweimal ausbürsten. 3a Entsprechende Bürsten siehe Tabelle B9.1 Bohrloch reinigen. Bohrloch zweimal ausblasen Bei Bohrdurchmesser do < 24 mm mit Handausbläser oder ölfreier Druckluft (≥ 6 bar). 4a Bei Bohrdurchmesser d₀ ≥ 24 mm mit ölfreier Druckluft (≥ 6 bar). Druckluftdüse verwenden. Mit Schritt 5a fortfahren (Anhang B 13)

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

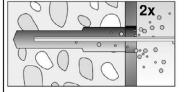

Mit Schritt 5a fortfahren (Anhang B 13)

fischer Highbond-Anker FHB / FHB dvn / FDA

Verwendungszweck	Anhang B 11
Montageanleitung Teil 1 Bohrlocherstellung und Bohrlochreinigung FHB, FHB N, FHB dyn und FDA	Appendix 26 / 37

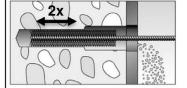

Montageanleitung Teil 2; Bohren und Reinigen FHB dyn V

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

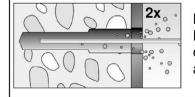

Bohrung 1 des abgestuften Bohrlochs erstellen. Bohrlochdurchmesser d_1 und Bohrlochtiefe h_1 siehe **Tabelle B7.1**

1c

Bohrung 2 des abgestuften Bohrlochs erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabelle B7.1**


2c

Bohrloch reinigen. Bohrloch zweimal mit Handausbläser oder ölfreier Druckluft (≥ 6 bar) ausblasen



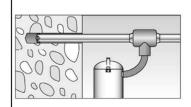
3с

Bohrung 2 des Bohrlochs mit Stahlbürste zweimal ausbürsten. Entsprechende Bürsten siehe **Tabelle B9.1**

4c

Bohrloch reinigen. Bohrloch zweimal mit Handausbläser oder ölfreier Druckluft (≥ 6 bar) ausblasen

Mit Schritt 5a fortfahren (Anhang B 13)


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1d

Einen geeigneten Hohlbohrer (siehe **Tabelle B2.1**) auf Funktion der Staubabsaugung prüfen.

2d

erwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten.

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein.

Erst Bohrung 1 des abgestuften Bohrlochs mit Bohrlochdurchmesser d_1 und Bohrlochtiefe h_1 (siehe **Tabelle B7.1**) erstellen.

Dann Bohrung 2 des abgestuften Bohrlochs mit Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 (siehe **Tabelle B7.1**) erstellen.

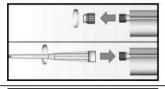
Mit Schritt 5a fortfahren (Anhang B 13)

fischer Highbond-Anker FHB / FHB dyn / FDA

Verwendungszweck

Montageanleitung Teil 2

Bohrlocherstellung und Bohrlochreinigung FHB dyn V


Anhang B 12

Appendix 27 / 37

Montageanleitung Teil 3; Injektionssystem FIS HB

Kartuschenvorbereitung

5a

Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

6a

Kartusche in das Auspressgerät legen

7a

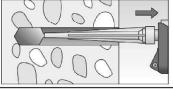
Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist.

Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

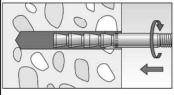
Fortfahren mit Schritt:

8a: FHB / FHB N - Vorsteckmontage siehe Anhang B 148b: FHB / FHB N - Durchsteckmontage siehe Anhang B 15

8c: FHB dyn - Vorsteckmontage siehe Anhang B 16
8d: FHB dyn - Durchsteckmontage siehe Anhang B 17
8e: FHB dyn V - Durchsteckmontage siehe Anhang B 18

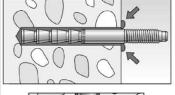

8f: FDA - Durchsteckmontage siehe Anhang B 19

fischer Highbond-Anker FHB / FHB dyn / FDA

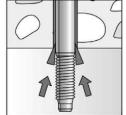

Montageanleitung Teil 4; Vorsteckmontage FHB / FHB N

Vorsteckmontage FHB / FHB N

8a



Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden. Bei Bohrlochtiefen $h_0 \ge 150$ mm Verlängerungsschlauch verwenden. Bei Überkopfmontage oder tiefen Bohrlöchern ($h_0 > 250$ mm) Iniektionshilfe verwenden.


Die Ankerstange mit leichten Drehbewegungen in das Bohrloch schieben. Nur saubere und ölfreie Stahlteile verwenden.

9a

Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

Falls nicht, die Ankerstange sofort ziehen und Mörtel nachinjizieren.

Bei Überkopfmontage die Ankerstange mit Keilen fixieren. (z.B. fischer Zentrierkeile)

10a

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

11a

Nach dem Anbringen des Anbauteils, werden die Unterlegscheibe und die Sechskantmutter montiert.

Auf richtige Lage der Stahlteile achten.

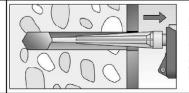
Sechskantmutter mit Montagedrehmoment T_{inst} (siehe **Tabelle B5.1**) anziehen.

12a Option

Den Bereich zwischen Stahlteilen und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel (FIS HB) befüllen.

ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Ankers)

fischer Highbond-Anker FHB / FHB dyn / FDA


Verwendungszweck Montageanleitung Teil 4 Vorsteckmontage FHB / FHB N Anhang B 14

Appendix 29 / 37

Montageanleitung Teil 5; Durchsteckmontage FHB / FHB N

Durchsteckmontage FHB / FHB N

8b

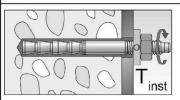
Ca. 2/3 des Bohrlochs (inkl. Anbauteil) mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden. Bei Bohrlochtiefen $h_0 \ge 150$ mm Verlängerungsschlauch verwenden. Bei Überkopfmontage oder tiefen Bohrlöchern ($h_0 > 250$ mm) Injektionshilfe verwenden.

Die vormontierte fischer Ankerstange (mit fischer Verfüllscheibe und Sechskantmutter) mit leichten Drehbewegungen in das Bohrloch schieben, bis die fischer Verfüllscheibe vollflächig anliegt.

Auf richtige Lage der Stahlteile achten.

Nur saubere und ölfreie Stahlteile verwenden.

Nach dem Setzen der vormontierte Ankerstange, muss Überschussmörtel um die fischer Verfüllscheibe ausgetreten sein (mindestens an einem Punkt). Falls nicht, die montierte Ankerstange sofort ziehen und Mörtel nachinjizieren.


10b

9b

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

11b

Sechskantmutter mit Montagedrehmoment T_{inst} (siehe **Tabelle B5.1)** anziehen.

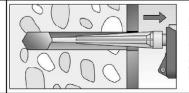
fischer Highbond-Anker FHB / FHB dyn / FDA

Verwendungszweck Montageanleitung Teil 5 Durchsteckmontage FHB / FHB N Anhang B 15

Appendix 30 / 37

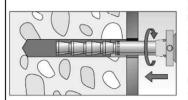
Montageanleitung Teil 6; Vorsteckmontage FHB dyn Vorsteckmontage FHB dyn Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden. Bei Bohrlochtiefen h₀ ≥ 150 mm Verlängerungsschlauch 8c verwenden. Bei Überkopfmontage oder tiefen Bohrlöchern (h₀ > 250 mm) Injektionshilfe verwenden. Die Ankerstange mit leichten Drehbewegungen in das Bohrloch schieben. Mindestüberstand hp beachten (siehe **Tabelle B6.1**) Nur saubere und ölfreie Stahlteile verwenden. Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. 9c Falls nicht, die Ankerstange sofort ziehen und Mörtel nachinjizieren. Bei Überkopfmontage die Ankerstange mit Keilen fixieren. (z.B. fischer Zentrierkeile) Aushärtezeit abwarten, tcure 10c siehe Tabelle B9.2 Nach dem Anbringen des Anbauteils, werden die fischer Verfüllscheibe, die Kugelscheibe und die Muttern (ohne Zentrierbuchse) montiert. Auf richtige Lage der Stahlteile achten. Sechskantmutter mit Montagedrehmoment T_{inst} (siehe **Tabelle B6.1**) 11c anziehen. Sicherungsmutter handfest anziehen und mit Schraubenschlüssel 1/4 bis 1/2 Umdrehung festziehen. Bei der Ausführung aus hochkorrosionsbeständigem Stahl ist die Sicherungsmutter eine Flachmutter (Sechskantmutter niedrig). Diese ist mit einem Drehmoment von 1/4 Tinst anzuziehen Den Bereich zwischen Stahlteilen und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel (FIS HB) befüllen. 12c Bei rein auf Zug beanspruchten Ankern, kann dieser Arbeitsschritt entfallen.

fischer Highbond-Anker FHB / FHB dyn / FDA


Verwendungszweck Montageanleitung Teil 6 Vorsteckmontage FHB dyn Anhang B 16

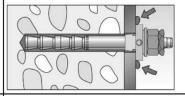
Appendix 31 / 37

Montageanleitung Teil 7; Durchsteckmontage FHB dyn


Durchsteckmontage FHB dyn

8d

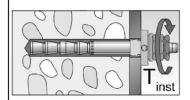
Ca. 2/3 des Bohrlochs (inkl. Anbauteil) mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden. Bei Bohrlochtiefen $h_0 \ge 150$ mm Verlängerungsschlauch verwenden. Bei Überkopfmontage oder tiefen Bohrlöchern ($h_0 > 250$ mm) Injektionshilfe verwenden.


9d

Die vormontierte fischer Ankerstange (mit Zentrierbuchse, fischer Verfüllscheibe, Kugelscheibe, Sechskantmutter und Sicherungsmutter) mit leichten Drehbewegungen in das Bohrloch schieben, bis die fischer Verfüllscheibe vollflächig anliegt.

Auf richtige Lage der Stahlteile und der Zentrierbuchse achten.

Nur saubere und ölfreie Stahlteile verwenden.


Nach dem Setzen der vormontierte Ankerstange, muss Überschussmörtel um die fischer Verfüllscheibe ausgetreten sein (mindestens an einem Punkt). Falls nicht, die montierte Ankerstange sofort ziehen und Mörtel nachinjizieren.

10d

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

11d

Sechskantmutter mit Montagedrehmoment T_{inst} (siehe **Tabelle B6.1)** anziehen. Sicherungsmutter handfest anziehen und mit Schraubenschlüssel ½ bis ½ Umdrehung festziehen.

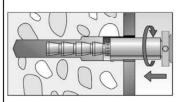
Bei der Ausführung aus hochkorrosionsbeständigem Stahl ist die Sicherungsmutter eine Flachmutter (Sechskantmutter niedrig). Diese ist mit einem Drehmoment von ½ T_{inst} anzuziehen

fischer Highbond-Anker FHB / FHB dyn / FDA

Verwendungszweck Montageanleitung Teil 7 Durchsteckmontage FHB dyn Anhang B 17

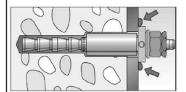
Appendix 32 / 37

Montageanleitung Teil 8; Durchsteckmontage FHB dyn V


Durchsteckmontage FHB dyn V

8e

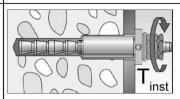
Ca. 2/3 des Bohrlochs (inkl. Anbauteil) mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden. Bei Bohrlochtiefen h₀ ≥ 150 mm Verlängerungsschlauch verwenden. Bei Überkopfmontage oder tiefen Bohrlöchern (h₀ > 250 mm) Injektionshilfe verwenden.


9e

Die vormontierte fischer Ankerstange (mit Querkrafthülse, Zentrierbuchse, fischer Verfüllscheibe, Kugelscheibe, Sechskantmutter und Sicherungsmutter) mit leichten Drehbewegungen in das Bohrloch schieben, bis die fischer Verfüllscheibe vollflächig anliegt.

Auf richtige Lage der Stahlteile und der Zentrierbuchse achten.

Nur saubere und ölfreie Stahlteile verwenden.


Nach dem Setzen der vormontierten Ankerstange, muss Überschussmörtel um die fischer Verfüllscheibe ausgetreten sein (mindestens an einem Punkt). Falls nicht, die montierte Ankerstange sofort ziehen und Mörtel nachinjizieren.

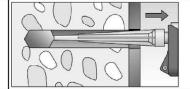
10e

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

11e

Sechskantmutter mit Montagedrehmoment T_{inst} (siehe **Tabelle B7.1**) anziehen. Sicherungsmutter handfest anziehen und mit Schraubenschlüssel $\frac{1}{4}$ bis $\frac{1}{2}$ Umdrehung festziehen.

fischer Highbond-Anker FHB / FHB dyn / FDA


Verwendungszweck Montageanleitung Teil 8 Durchsteckmontage FHB dyn V Anhang B 18

Appendix 33 / 37

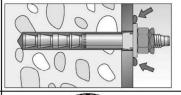
Montageanleitung Teil 9; Durchsteckmontage FDA

Durchsteckmontage FDA

8f

Ca. 2/3 des Bohrlochs (inkl. Anbauteil) mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden. Bei Bohrlochtiefen h₀ ≥ 150 mm Verlängerungsschlauch verwenden. Bei Überkopfmontage oder tiefen Bohrlöchern (h₀ > 250 mm) Injektionshilfe verwenden.

9f



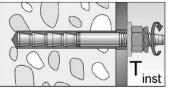
Die vormontierte fischer Ankerstange (mit Zentrierbuchse, Unterlegscheibe, Sechskantmutter und Sicherungsmutter) mit leichten Drehbewegungen in das Bohrloch schieben, bis die Unterlegscheibe vollflächig anliegt.

Mit leichten Hammerschlägen den Anker auf die Setztiefe einschlagen.

Auf richtige Lage der Stahlteile und der Zentrierbuchse achten.

Nur saubere und ölfreie Stahlteile verwenden.

Nach dem Setzen der vormontierten Ankerstange, muss Überschussmörtel unter der gesamten Unterlegscheibe austreten.


Falls nicht, die montierte Ankerstange sofort ziehen und Mörtel nachinjizieren.

10f

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

11f

Sechskantmutter mit Montagedrehmoment T_{inst} (siehe **Tabelle B8.1)** anziehen. Sicherungsmutter handfest anziehen und mit Schraubenschlüssel ½ bis ½ Umdrehung festziehen.

fischer Highbond-Anker FHB / FHB dyn / FDA

Verwendungszweck Montageanleitung Teil 9 Durchsteckmontage FDA Anhang B 19

Appendix 34 / 37

Tabelle C1.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug- / Querzugbeanspruchung von fischer Ankerstangen FHB-A / FHB-A N / FHB-A dyn (V) / FDA

	beanspit	ichung	y voi i	1130116	AIINEISI	angen i i	D-A / FND	-77 IN / I I II	J-A uyıı (V	TIDA
Ankers	tange				10x60	12x80	12x100	16x125	20x170	24x220
Zugtrag	ıfähigkeit, Stahlvers	agen			,					
		gvz	8.8		25,8	44,3	44,3	81,7	130,8 2)	179,8 2)
Þ		gvz	5.8		16,1	27,7	27,7	51,1	_3)	_3)
staı	FHB-A / FHB-A N	hdg	8.8		25,8	44,3	44,3	81,7	190,2	261,5
der		R	80		25,8	44,3	44,3	81,7	166,5 4)	228,8 4)
. Wid N _{RK,s}		HCR	70	[kN]	22,5	38,8	38,8	71,5	166,5	228,8
Charakt. Widerstand N _{Rk.s}	FHB-A dyn	gvz	8.8		_3)	_3)	44,3	81,7	190,2	261,5
Jara		HCR	70		_3)	_3)	38,8	71,5	_3)	_3)
ဝ်	FHB-A dyn V	gvz	8.8		_3)	_3)	44,3	81,7	_3)	_3)
	FDA	gvz	8.8		_3)	_3)	44,3	81,7	_3)	_3)
Teilsich	erheitsbeiwerte 1)									
Teilsich	erheitsbeiwert	γΝ	ls,N	[-]			1,	50		
Quertra	gfähigkeit, Stahlver	sagen								
Ohne H	ebelarm									
		gvz	8.8		16,6	28,1	28,1	52,2	61,1 ²⁾	90,8 2)
Þ	FHB-A / FHB-A N	gvz	5.8	[kN]	10,4	17,6	17,6	32,7	_3)	_3)
staı		hdg	8.8		16,6	28,1	28,1	52,2	98,0	141,2
Charakt. Widerstand V ^{ork.s}		R	80		24,8	32,8	32,8	62,8	85,8 4)	152,6 ⁴⁾
Wide ORK,s		HCR	70		25,1	36,9	36,9	55,0	85,8	141,1
- ,	FHB-A dyn	gvz	8.8		_3)	_3)	28,1	52,2	98,0	141,2
lara		HCR	70		_3)	_3)	36,9	55,0	_3)	_3)
ઇ	FHB-A dyn V	gvz	8.8		_3)	_3)	56,9	96,2	_3)	_3)
	FDA	gvz	8.8		_3)	_3)	28,1	52,2	_3)	_3)
Duktilitä	tsfaktor	k	(7	[-]			1	,0		
Mit Heb	elarm	_								
		gvz	8.8		59,8	104,8	104,8	266,4	357,0 ²⁾	617,4 ²⁾
pu		gvz	5.8		37,4	65,5	65,5	166,5	_3)	_3)
staı	FHB-A / FHB-A N	hdg	8.8		59,8	104,8	104,8	266,4	519,3	898,0
Charakt. Widerstand M ^{ORK.S}		R	80		59,8	104,8	104,8	266,4	454,4 ⁴⁾	785,8 ⁴⁾
t. Wide M ^o Rk,s		HCR	70	[Nm]	52,3	91,7	91,7	233,1	454,4	785,8
akt. ⊼	FHB-A dyn	gvz	8.8]	_3)	_3)	104,8	266,4	519,3	898,0
Jarí		HCR	70	1	_3)	_3)	91,7	233,1	_3)	_3)
Ö	FHB-A dyn V	gvz	8.8		_3)	_3)	104,8	266,4	_3)	_3)
	FDA	gvz	8.8		_3)	_3)	104,8	266,4	_3)	_3)
Teilsich	nerheitsbeiwerte 1)									
Teilsich	erheitsbeiwert	γ.	ls,V	[-]			1,	25		

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Highbond-Anker FHB / FHB dyn / FDA

Leistungen

Charakteristische Werte für die Stahltragfähigheit unter Zug- / Querzugbeanspruchung von fischer Ankerstangen FHB-A / FHB-A N / FHB-A dyn (V) / FDA

Anhang C 1

Appendix 35 / 37

 $^{^{2)}} f_{yk} = 440 \ N/mm^2 / f_{uk} = 550 \ N/mm^2$

³⁾ Keine Leistung bewertet

 $^{^{4)}} f_{yk} = 560 \ N/mm^2 / f_{uk} = 700 \ N/mm^2$

Tabelle C2.1: Charakteristische Werte für Betonversagen unter Zug- / Querzugbeanspruchung

					FHB	/ FHB N /	FHB dyn /	FDA		
Größe			Alle Größen							
Zugbelastung										
Montagebeiwert		γinst	[-]			Siehe An	hang C 3			
Faktoren für Betor	ndruckfestigke	iten >	C20/25							
	C25/30					1,	10			
	C30/37					1,	22			
Erhöhungs-	C35/45)T(1,	34			
faktor für N _{Rk,p}	C40/50	Ψ_{c}	[-]			1,	41			
	C45/55					1,	48			
	C50/60			1,55						
Versagen durch Sp	palten									
Randabstand		C _{cr,sp}	[mm]	2 h _{ef}						
Achsabstand S _{cr,sp}			[[[]]]	4 h _{ef}						
Versagen durch B	etonausbruch									
Ungerissener Betor	1	k _{ucr,N}	 [-]	11,0						
Gerissener Beton		k _{cr,N}	[-]	7,7						
Randabstand		Ccr,N	[mm]	1,5 h _{ef}						
Achsabstand		Scr,N	[iiiiii]	3 hef						
Querzugbelastung										
Montagebeiwert		γinst	[-]			1	,0			
Betonausbruch au	f der lastabge	wandte	en Seite	9						
Faktor für Betonaus	bruch	k ₈	[-]			2	,0			
Betonkantenausbr	uch									
Ankergröße				10x60	12x80	12x100	16x125	20x170	24x220	
Effektive Länge des	Ankers	If	[mm]	60	80	100	125	170	220	
Rechnerischer Durc	hmesser	d _{nom}	[mm]	10	12	12	17	22	25	

fischer Highbond-Anker FHB / FHB dyn / FDA	
Leistungen Charakteristische Werte für die Zug- / Querzugtragfähigkeit	Anhang C 2 Appendix 36 / 37

Tabelle C3.1:	Charakteristische Werte für Versagen durch Herausziehen
	von fischer Ankerstangen FHB-A / FHB-A N / FHB-A dvn (V) / FDA

Ankerstange			10x60	12x80	12x100	16x125	20x170	24x220	
Versagen durch Herausziehen									
Rechnerischer Durchmesser	d	[mm]	10	12	12	16	20	24	
Ungerissener Beton									
Charakteristischer Widerstand	im un	gerissen	en Beton (C20/25					
Tempe- I: 24 °C / 40 °C	NI FLANT	[IZNI]	26,9	41,3	42,1	70,5	113,6	122,2	
ratur- II: 50 °C / 80 °C	V _{Rk,p}	[kN]	23,7	36,3	37,0	62,0	100,0	107,5	
Gerissener Beton									
Charakteristischer Widerstand	im ge	rissenen	Beton C20	0/25					
Tempe- I: 24 °C / 40 °C	ΛI	,p [kN]	15,5	25,0	30,0	47,8	58,9	89,4	
ratur- II: 50 °C / 80 °C	V _{Rk,p}		13,6	22,0	26,4	42,1	51,8	78,7	
Montagebeiwerte									
Trockener oder nasser Beton	r 1	1,0							
Wassergefülltes Bohrloch	γinst	[-]	1,0	1,0	1,0	1,2	1,0	1,0	

Tabelle C3.2: Verschiebungen für fischer Ankerstangen

FHB-A / FHB-A N / FHB-A dyn (V) / FDA

Ankerstange			10x60	12x80	12x100	16x125	20x170	24x220		
Verschiebungs-Faktoren für Zuglast 1)										
Ungerissener Beton; Temperaturbereich I, II										
Verschiebungen	δηο	[mm/kN]]	0,025	0,01	0,01	0,007	0,006	0,006		
	δ _{N∞}	[mm/kN]	0,05	0,02	0,02	0,014	0,012	0,012		
Gerissener Beton; Tem	peraturbere	ich I, II								
Varaahiahungan	δηο	[mm/kN]	0,04	0,02	0,02	0,02	0,02	0,02		
Verschiebungen	δ _{N∞}		0,06	0,03	0,03	0,03	0,03	0,03		
Verschiebungs-Faktoren für Querlast ²⁾										
Ungerissener oder gerissener Beton; Temperaturbereich I, II										
Verschiebungen	δνο	[mm/lcN1]	0,025	0,01	0,01	0,007	0,006	0,006		
		[mm/kN]	0,05	0,02	0,02	0,014	0,012	0,012		

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot N_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot N_{\text{Ed}}$

(N_{Ed}: Bemessungswert der einwirkenden Zugkraft)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Highbond-Anker FHB / FHB dyn / FDA

Leistungen

Charakteristische Werte für die Zugtragfähigkeit Verschiebungen für fischer Ankerstangen FHB-A / FHB-A N / FHB-A dyn (V) / FDA Anhang C 3

Appendix 37 / 37